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In this article we detail the use of machine learning for spatio-temporally dynamic
turbulence model classification and hybridization for large eddy simulations (LES)
of turbulence. Our predictive framework is devised around the determination of
local conditional probabilities for turbulence models that have varying underlying
hypotheses. As a first deployment of this learning, we classify a point on our
computational grid as that which requires the functional hypothesis, the structural
hypothesis or no modelling at all. This ensures that the appropriate model is specified
from a priori knowledge and an efficient balance of model characteristics is obtained
in a particular flow computation. In addition, we also utilize the conditional-probability
predictions of the same machine learning to blend turbulence models for another
hybrid closure. Our test case for the demonstration of this concept is given by
Kraichnan turbulence, which exhibits a strong interplay of enstrophy and energy
cascades in the wavenumber domain. Our results indicate that the proposed methods
lead to robust and stable closure and may potentially be used to combine the strengths
of various models for complex flow phenomena prediction.

Key words: computational methods, turbulence modelling

1. Introduction
Turbulence is an active area of research due to its significant impact on a diverse set

of challenges such as those pertaining to the aerospace and geophysical communities.
In recent decades, computational fluid dynamics (CFD) has proven to be useful
for low-cost realizations of flow phenomena for critical decision making processes.
However, CFD is still fairly limited in terms of accuracy due to the exceptional
computational expense involved in high-fidelity simulations of turbulence. ‘True’
numerical experiments require the use of a direct numerical simulation (DNS) of the
Navier–Stokes equations. DNS is only possible if a discretized domain can resolve
all possible wavenumbers in a flow and is therefore out of reach of the vast majority
of engineering and geophysical applications for the foreseeable future. Large eddy
simulations (LES) have proven to be a promising strategy for resolving a greater
number of scales in a flow but require the specification of a model which represents

† Email address for correspondence: osan@okstate.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

kl
ah

om
a 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

16
 S

ep
 2

01
9 

at
 1

6:
02

:4
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://orcid.org/0000-0002-2241-4648
mailto:osan@okstate.edu
https://doi.org/10.1017/jfm.2019.254
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Sub-grid scale model classification and blending through deep learning 785

the interactions of the higher wavenumbers with the mean flow (Sagaut 2006). This
sub-grid scale (SGS) model, also known as a closure, is usually specified in the
form of an algebraic or differential equation and is generally flow category specific
(Vreman 2004). This imposes a caveat on the applicability of a SGS model if no
a priori information of the flow category is known.

In this paper, we explore the utilization of machine learning for dynamically
inferring regions where a particular turbulence modelling hypothesis is applicable
with the goal of improving predictive capabilities of turbulence dynamics for a wide
range of problems. The multi-scale nature of turbulence requires the use multiple
modelling approximations for the higher wavenumbers which remain unsupported by
computational degrees of freedom (a case for most flows of any practical interest). The
procedure of modelling these smaller scales is often denoted closure due to insufficient
knowledge about larger wavenumber interactions with the coarse-grained system
(Berselli, Iliescu & Layton 2006) and remains vital for the accurate computation of
many applications (Hickel, Egerer & Larsson 2014; Yu, Xiao & Li 2016).

Explicit LES argues for the utilization of sub-grid models specified as algebraic
or differential equations for the unresolved scales. These are built on an intuitive
reasoning of how the losses of coarse graining the Navier–Stokes equations may be
incorporated into an LES deployment. Some of the most notable sub-grid closure
strategies are those given by the linear eddy-viscosity hypothesis, which models the
sub-grid stress tensor through the Boussinesq approximation. Within the context of
the Navier–Stokes equations, it is generally accepted that the vorticity dominated
smaller scales are dissipative (Kolmogorov 1941) and therefore, most turbulence
models seek to specify a sub-grid dissipation (Frisch 1995). Many functional sub-grid
models can be traced back to Smagorinsky (1963), where an effective eddy viscosity
was determined by an a priori specified mixing length and a k−5/3 scaling recovery
for the kinetic energy content in the wavenumber domain, where k refers to the
wavenumber. Similar hypotheses have also been used for two-dimensional turbulence
(often utilized as a test bed for geophysical scenarios, for instance see McWilliams
(1990), Tabeling (2002), Boffetta & Ecke (2012), Pearson et al. (2017), Pearson &
Fox-Kemper (2018)), for approximating the k−3 cascade and generally have their
roots in dimensional analysis related to the cascade of enstrophy (Leith 1968). These
models may also be classified as functional due to the phenomenological nature of
their deployment and comprise the bulk of explicit LES turbulence models used
in practical deployments. Explicit LES closures may also be specified through the
specification of a low-pass spatial filter to account for the unresolved scales (Bardina,
Ferziger & Reynolds 1980; Stolz & Adams 1999; Layton & Lewandowski 2003;
Mathew et al. 2003; San & Vedula 2018) where phenomenology is bypassed but
ansatze are provided for the bulk dissipative nature of the smaller scales through the
control of a characteristic filter width. In either scenario, i.e. whether structural or
functional, the choice of the phenomenology (or dissipation control parameter) plays
a key role in the successful calculation of accurate a posteriori statistics.

The past few years have seen a rapid increase in the use of machine learning
for various scientific and engineering applications. For turbulence, some widely
used strategies for prediction and inference include symbolic regression such as
in Weatheritt & Sandberg (2016, 2017a,b), where functional model forms for
Reynolds-averaged Navier–Stokes (RANS) deployments were generated through
evolutionary optimization against high-fidelity data. Other techniques incorporating
Bayesian ideologies have also been used, for instance in Xiao et al. (2016) where an
iterative ensemble Kalman method was used to assimilate prior data for quantifying
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model-form uncertainty in RANS models. In Wang, Wu & Xiao (2017b), Wang
et al. (2017a) and Wu, Xiao & Paterson (2018), random-forest regressors were
utilized for RANS turbulence modelling given direct numerical simulation (DNS)
data. In Singh & Duraisamy (2016) and Singh, Medida & Duraisamy (2017), an
artificial neural network was utilized to predict a non-dimensional correction factor
in the Spalart–Allmaras turbulence model through a field-inversion process using
experimental data. Bypassing functional formulations of a turbulence model was also
studied from the RANS point of view by Tracey, Duraisamy & Alonso (2015). Ling
& Templeton (2015) utilized support vector machines, decision trees and random
forest regressors for identifying regions of high RANS uncertainty. A deep-learning
framework where Reynolds stresses would be predicted in an invariant subspace was
developed by Ling, Kurzawski & Templeton (2016b). Machine learning of invariance
properties has also been discussed in the context of turbulence modelling by Ling,
Jones & Templeton (2016a). The reader is directed to a recent review by Duraisamy,
Iaccarino & Xiao (2019), for an excellent review of turbulence modelling using
data-driven ideas.

As shown above, the use of data-driven ideologies and in particular artificial neural
networks (ANNs) has generated significant interest in the turbulence modelling
community for addressing long-standing challenges (also see Sotgiu, Weigand
& Semmler (2018), Zhang et al. (2019), Zhu et al. (2019) for recent examples).
A multilayered ANN may be optimally trained to approximate any nonlinear function
(Hornik, Stinchcombe & White 1989) and the large data sets involved in turbulence
research coupled with ever-improving computing capabilities has also motivated the
study of ANN-based learning. Within the context of LES (and associated with the
scope of this paper) there are several investigations into sub-grid modelling using
data-driven techniques. In an early study of the feasibility of using learning from DNS,
Sarghini, De Felice & Santini (2003) deployed ANNs for estimating Smagorinsky
model-form coefficients within a mixed sub-grid model for a turbulent channel flow.
ANNs were also used for wall modelling by Milano & Koumoutsakos (2002) where
their approach was used to reconstruct the near wall field and compared to standard
proper-orthogonal-decomposition techniques. An alternative to ANNs for sub-grid
predictions was proposed by King, Hamlington & Dahm (2016) where a priori
optimization was utilized to minimize the Euclidean norm (L2-error) between true
and modelled sub-grid quantities using a parameter-free Volterra series. Maulik &
San (2017b) utilized an extreme-learning-machine (a variant of a single-layered
ANN) to obtain maps between low-pass spatially filtered and deconvolved variables
in an a priori sense. This had implications for the use of ANNs for turbulence
modelling without model-form specification. A more in-depth investigation was
recently undertaken by Fukami, Fukagata & Taira (2018) where convolutional ANNs
were utilized for reconstructing from downsampled snapshots of turbulence. Maulik
et al. (2018) also deployed a data-driven convolutional and deconvolutional operation
to obtain closure terms for two-dimensional turbulence. Gamahara & Hattori (2017)
utilized ANNs for identifying correlations with grid-resolved quantities for an indirect
method of model-form identification in turbulent channel flow. The study by Vollant,
Balarac & Corre (2017) utilized ANNs in conjunction with optimal estimator theory to
obtain functional forms for sub-grid stresses. In Beck, Flad & Munz (2018), a variety
of neural network architectures such as convolutional and recurrent neural networks
were studied for predicting closure terms for decaying homogeneous isotropic
turbulence. A least-squares-based truncation was specified for stable deployments
of their model-free closures. Model-free turbulence closures were also specified by
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Maulik et al. (2018, 2019), Wang et al. (2018) and Lapeyre et al. (2019), where
sub-grid scale stresses were learned directly from DNS data and deployed in
a posteriori assessments. King et al. (2018) studied generative-adversarial networks
and the Lattice Boltzmann flow simulations using deep neural networks (LAT-NET)
(Hennigh 2017) for a priori recovery of statistics such as the intermittency of
turbulent fluctuations and spectral scaling.

While a large majority of the LES-based frameworks presented above utilize a
least-squares error minimization technique for constructing maps to sub-grid stresses
directly for theoretically optimal LES (Langford & Moser 1999; Moser et al. 2009;
LaBryer, Attar & Vedula 2015), this work is novel in that it utilizes sub-grid statistics
(pre-computed from DNS data) to train a classifier. Although a machine learning
framework with built in invariance (examples may be found in Ling et al. (2016a,b)
and Wang et al. (2018)) ensures far greater generalizability of the learning during
a posteriori deployment, we remark that our consideration in this work avoids the
study of invariance which is a subject of future investigations. Furthermore, we note
that the decaying test case studied here is characterized by isotropy which implies that
the loss of translational and rotational invariance properties are not significant. This
results from the fact that the inputs fed into our learning are essentially combinations
of the derivatives of the velocity vector.

Our trained intelligence utilizes the most appropriate turbulence modelling
hypothesis (i.e. either structural or functional) from a priori experience to close
the LES governing equations. It is also deployed to blend turbulence models linearly
at each point during flow evolution for a novel hybrid closure. In this manner, we
are able to co-deploy models having fundamentally different underlying hypotheses
for turbulence parameterizations in a stable manner. This is similar to the study
employed in Ling & Kurzawski (2017) where machine learning is utilized for adaptive
error corrections in RANS deployments. In the rest of this article, we discuss the
governing equations of decaying Kraichnan turbulence, introduce our machine learning
architecture and its optimization and detail its a priori and a posteriori performance
through statistical assessments.

2. Governing equations
We proceed by outlining our Kraichnan turbulence test case which is a simplified

prototype for geophysical flow phenomena (Pearson et al. 2017). The governing
equations of motion for Kraichnan turbulence are given by the two-dimensional
Navier–Stokes equations in a periodic domain. The non-dimensionalized version
of these equations may be expressed in the vorticity (ω) and streamfunction (ψ)
formulation as (San & Staples 2012),

∂ω

∂t
+ J(ω, ψ)=

1
Re
∇

2ω,

x, y ∈ [0, 2π], t ∈ [0, 4],

 (2.1)

where we define the Jacobian (or the nonlinear term as)

J(ω, ψ)=
∂ω

∂x
∂ψ

∂y
−
∂ω

∂y
∂ψ

∂x
, (2.2)

and the conservation of mass is enforced by

∇
2ψ =−ω. (2.3)
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A measure of multi-scale behaviour in this system is given by the Reynolds number
(Re). A high value of Re combined with a coarse-grid projection of these equations
results in insufficient support for the finest structures in the flow evolution, leading to
noise accumulation at grid cutoff and potential floating point overflow of the numerical
evolution of this problem. A sufficiently coarse-grained representation of the governing
equations introduced previously are given by the LES governing equations

∂ω̄

∂t
+ J(ω̄, ψ̄)=

1
Re
∇

2ω̄+Π,

∇
2ψ̄ =−ω̄,

 (2.4)

where Π may be assumed to be the perfect closure given by

Π = J(ω̄, ψ̄)− J(ω, ψ). (2.5)

When adequately simulated, the decaying Kraichnan turbulence test cases result in
the classical k−3 scaling of the energy spectra (Kraichnan 1967). We focus on two
competing ideologies for approximating closure. The first is given by the functional
hypothesis and may be expressed as

Π = νe∇
2ω̄, (2.6)

where the Smagorinsky approximation to the eddy viscosity νe is given by

νe = (Csδ)
2
|S̄|,

|S̄| =

√
4
( ∂2ψ̄

∂x∂y

)2
+

(∂2ψ̄

∂x2
−
∂2ψ̄

∂y2

)2
,

 (2.7)

where it is very common to consider the filter length scale δ as the representative
mesh size. The static specification of Cs might yield over-dissipative or under-
dissipative results (e.g. see Canuto & Cheng 1997; Vorobev & Zikanov 2008;
Cushman-Roisin & Beckers 2011). A successful application of this closure necessitates
a dynamic calculation of the Smagorinsky coefficient Cs that requires the specification
of a test filter and a spatial averaging for stabilized deployment. This approach is the
well-known dynamic Smagorinsky (DS) closure (Germano et al. 1991; Lilly 1992)
and its two-dimensional abstraction for Kraichnan turbulence has been presented by
San (2014) by showing that Cs dynamically varies between 0.1 and 0.2 in agreement
with previously reported values in LES literature (e.g. see also Maulik & San (2017a)
for a modular approach in various functional forms).

A competing ideology is given by the structural (or scale-similarity) hypothesis
which assumes that the LES equations are projections of the Navier–Stokes equations
to a smoother space where an inverse-filtering operator may be utilized to recover
the finer scales that are lost. Mathematically,

Π = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗), (2.8)

where ω∗ and ψ∗ are approximately deconvolved variables obtained through an
inverse-filtering procedure and a Gaussian-type filter kernel (given by G(a)= ã with
G being the filter kernel applied on a field variable a and ã being its low-pass spatially
filtered counterpart) is an approximation of the projection to the LES space. However,
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these techniques are limited due to the underlying assumption of isomorphism between
the LES and the Navier–Stokes equations (Germano 2015). In practice, this implies
that structural hypotheses are appropriate only if finer structures are sufficiently well
resolved on a particular grid. As such, this diminishes their benefit for practical
flows where grid cutoff wavenumbers are generally much smaller than the largest
wavenumber in the flow. The breakdown of structural closures manifests itself in the
form of stability issues. For this reason, many successful closure deployments utilize
linear combinations of structural and functional models (Habisreutinger et al. 2007).
In this work, we implement approximate deconvolution (AD) (Stolz & Adams 1999;
San et al. 2011) which utilizes an iterative application of the trapezoidal filter kernel
for inversion of filtered grid quantities, and utilize three iterative resubstitutions to
deconvolve our grid-resolved variables.

3. Machine learning
We now turn to the procedure of utilizing DNS data for learning when to switch

between one of three closure scenarios. Of these three options, two are given by the
choice of the functional hypothesis and AD. The third option is that of a no-model
scenario where our learning determines that closure modelling is unnecessary. The
third scenario is retained since there is a possibility of localized areas in a flow
having adequate grid support so that the contributions of the sub-grid scale become
negligible. This switching between scenarios is spatio-temporally dynamic. Before
proceeding, we note that the functional deployment eschews the dynamic procedure
and simply sets an arbitrarily large value of Cs = 1.0 for the calculation of the
eddy-viscosity kernel given by (2.7) as utilized in our training. We proceed by
outlining our learning strategy through the utilization of DNS data. Five snapshots
of DNS data at Re= 32 000 and at 20482 degrees of freedom (from 40 000 available
snapshots) are utilized to compute the grid-filtered variables (herein denoted by FDNS)
at 2562 degrees of freedom through the application of a spectral cutoff filter (i.e. only
retaining the wavenumbers with respect to the coarse-grained LES grid support).
Perfect closure values (Π ) are then obtained (the reader is directed to Maulik et al.
(2019) for details related to the calculation of these quantities). Figure 1 visually
quantifies the effect of the spectral domain filtering where the FDNS of a snapshot
of vorticity is shown. We then introduce the a priori eddy viscosity given by

νa
e =

Π

∇2ω̄
, (3.1)

where all the terms on the right-hand side of the above equation are available
through calculation from the DNS snapshots. The a priori eddy viscosity is centred
at a value of zero (corresponding to a region where closure modelling is unnecessary)
and has tails in the negative and positive directions. A core component of the
hypothesis in this work stems from the fact that structural hypotheses are not limited
to positive eddy-viscosity predictions alone. The reader may note that models utilizing
the functional hypothesis always lead to positive eddy viscosities. The a priori
eddy viscosities calculated from the DNS data are then projected onto a Gaussian
distribution where values lying within a distance of 1 % of the standard deviation
from the mean (of zero) are labelled as those requiring no closure (due to the low
strength of the a priori eddy viscosity). Values lying beyond this range are labelled
as functional or structural, depending on whether they are positive or negative,
respectively. This information is encoded in one-hot labelling for a classification
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FIGURE 1. (Colour online) Visualization of the effect of Fourier cutoff filtering with
DNS at N2

= 20482 (a) and corresponding FDNS at N2
= 2562 (b).

deployment and a corresponding schematic for this hypothesis segregation is shown
in figure 2. It is observed that a large portion of the available data lies within the first
standard deviation of the mean eddy viscosity. This leads to the potential of turbulence
modelling classification being considered from an outlier detection point of view.
A factor which motivates the choice of the Gaussian distribution is the nature of the
decaying Kraichnan turbulence. However, we note that machine learning algorithms
are also capable of classifying data belonging to complex distributions and that this
hypothesis segregation may be tuned for better accuracy. Also, the choice of the 1 %
hyper-parameter is also motivated by observing a posteriori training accuracies where
it is noticed that a relatively simple architecture (mentioned next) is efficiently able
to discern the varying hypothesis. Values greater than 1 % for model delineation led
to reduced learning accuracies indicating that a physical delineation potentially exists
in this projection and categorization. Essentially, categorizing closure bins for values
greater than 1 % leads to poorer training and validation classification accuracies
during the machine learning phase. This could indicate that a clear distinction
between modelling requirements is lost through this segregation. Further study for
adding complexity to the hypothesis segregation is thus, a necessity.

Each label for the a priori eddy viscosity is also associated with an input kernel
of grid-resolved quantities. This kernel is given by a stencil of 9 inputs each of
vorticity and streamfunction (for a total of 18 input variables). These 9 inputs of
each field are given by a query of the field quantity at a point on the coarse grid,
the 4 adjacent points in each dimension and the 4 diagonally adjacent points. Each
sample of our training data thus consists of 18 inputs of vorticity and streamfunction
and outputs given by one-hot labels for the choice of closure modelling strategy. In
this article, we have leveraged the fact that the means of vorticity and streamfunction
are both very close to zero and do not necessitate normalization. In addition,
the non-dimensionalized formulation of the governing equations implies that our
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PDF of ˜a
e

Hypothesis segregation

No-model

FIGURE 2. (Colour online) Data segregation for one-hot labelling. The a priori eddy
viscosities are projected onto a Gaussian distribution where data beyond 1.0 % of the
standard deviation are labelled as requiring structural (if negative) or functional (if
positive) modelling. The remaining data points are classified as no-model cases.

inputs are all dimensionless. However, we note that for practical deployments of
any local-kernel-based machine learning queries, grid-resolved quantities must be
normalized and non-dimensionalized.

Mathematically, if our input vector p resides in a P-dimensional space and our
desired output q resides in a Q-dimensional space, this framework establishes a map
M as follows:

M : {p1, p2, . . . , pP} ∈RP
→{q1, q2, . . . , qQ} ∈RQ. (3.2)

Accordingly, the framework utilized in this article leads to the following relation:

M : {p} ∈R18
→{P(q|p)} ∈R3, (3.3)

where our input and output spaces are given by

pi,j = {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1, ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1},

qi,j = {P(Π k
i,j|pi,j)},

}
(3.4)

where i, j refer to the spatial indices on the coarse grid (i.e. the point of deployment)
and k refers to the choice of closure scenario (i.e. structural, functional or no
closure). We note here that the choice of the local stencil for ANN query reflects
the discretization of the governing equations (with second-order accurate stencils
requiring a ±1 query) and the use of the trapezoidal filter in AD. Also, note that our
choice of input space is given by raw variable queries rather than derivatives (or other
such engineered terms). This is motivated by an aversion to specify bias towards any
particular quantity that may otherwise by learned implicitly by the network. However,
we note that the classification workflow may benefit significantly from the inclusion
of a feature engineering step prior to optimization. This is a subject of ongoing
investigation.
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Our optimal map M is then trained by the following loss function

E(w)=−
N∑

n=1

K∑
k=1

{tnk log(ynk)+ (1− tnk) log(1− ynk)}, (3.5)

where w are the tuneable weights and biases of the network, N is the total number
of samples and K = 3 is the total number of closure scenarios. Here, tnk refers to
the target (or true) label of class k and sample n and ynk refers to its corresponding
prediction. Note that one-hot encoding ensures that tnk values are always binary
(Bishop 2006). For reference, our architecture is trained using the open-source deep
learning software Tensorflow and is optimized with the use of ADAM, a popular
gradient-descent-based optimizer.

Our learning architecture is given by a 5 hidden-layer deep neural network with 40
neurons each for calculating the conditional probabilities of the three closure scenarios
pointwise in space and time. The hidden-layer neurons employ a rectified-linear
activation and the output layer gives us softmax probabilities for the three classes.
The scenario with the highest conditional probability is then deployed for model
classification i.e.

ΠML
i,j =Π

k
i,j s.t. argmax

k
P(Π k

i,j|pi,j), (3.6)

where ΠML
i,j refers to the machine-learning-based turbulence model computation at

a point. In the case of model blending, the conditional probabilities for closure
scenarios are used to find a linear combination of the standard Smagorinsky and the
AD closures. In other words,

ΠML
i,j = P(ΠAD

i,j |pi,j)Π
AD
i,j + P(Π SM

i,j |pi,j)Π
SM
i,j , (3.7)

where ΠAD
i,j and Π SM

i,j are AD and Smagorinsky predictions for the turbulence model
at a point. We note that the same learning framework is deployed in these two
conceptually different scenarios.

The framework is trained using the previously mentioned categorical cross-entropy
error minimization for the one-hot encoded targets. A threefold cross-validation is
utilized with a grid search for the number of layers (between 1 and 8) and number of
neurons (between 10 and 100 at intervals of 10) to arrive at the optimal architecture
mentioned previously. This optimal network is then trained for 2000 epochs to arrive
at a classification accuracy of 79 % for training and approximately 68 % accuracy for
validation. Convergence in validation loss was observed at around 1500 epochs as
shown in figure 3. We note here that our validation data (amounting to one third of
the total training data set) were not exposed to the network during gradient calculation
in the back-propagation-based training procedure. Effectively, our learning is derived
from two thirds of the total training data while our best model is chosen from
that with the lowest validation loss. This is to ensure that the chances of network
extrapolation are minimized. Multiple random initializations of our network weights
led to similar training and validation behaviour as also seen in figure 3. Note one
initialization is seen to take a longer time to converge as against the rest. The optimal
learning is then deployed into a posteriori evolution of the Kraichnan turbulence test
case where a pointwise closure deployment is performed for a variety of test cases.
We also note that our labelled data are pre-processed to ensure that an equal number
of samples are available from each classification regime to prevent our learning from
prioritizing one outcome over the other two.
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FIGURE 3. (Colour online) Neural network training and validation loss for the proposed
learning framework for one random weight initialization showing convergence at around
1500 epochs (a). The training (in black) and validation (in red) saturation behaviour for
different initializations also indicated convergence to similar accuracies as shown on the
right. The best model was chosen according to lowest validation loss for reduced over-
fitting in forward deployments.

4. Results

We proceed by examining the performance of our framework for various a posteriori
deployments which act as a rigorous testing of our learning for both classification and
blending. We remind the reader that a posteriori deployments of learning frameworks
imply performance assessments in the presence of challenging numerical errors
and represent the ultimate test of a data-driven framework. Briefly, the Kraichnan
turbulence problem is specified by periodic boundary conditions on a rectangular
domain and an initial condition which is given by an energy spectrum in wavenumber
space. In this two-dimensional problem very fine scales are developed quickly and this
leads to the classical k−3 scaling of the kinetic-energy spectra which is a characteristic
of the cascade of enstrophy in two-dimensional turbulence. The turbulence then decays
gradually over time and thus represents an unsteady closure modelling assessment for
our proposed framework.

We assess the viability of the proposed framework through energy spectrum
calculations of various reduced-order deployments as well as vorticity structure
functions obtained from the same. Time histories of the turbulent kinetic energy
(denoted TKE) and the variance of vorticity (denoted σ 2(ω̄)) are also plotted for
forward deployments. Detailed explanations of the numerical schemes and energy
spectrum calculations utilized for this problem may be found in Maulik & San
(2017c). Briefly, all our spatial numerical schemes are second-order accurate and
our time integration is third-order total-variation diminishing. Our vorticity structure
function calculations are given by Grossmann & Mertens (1992):

Sω = 〈|ω̄(x+ r)− ω̄(x)|2〉, (4.1)

where the angle brackets indicate ensemble averaging and x indicates a position on the
grid with r being a certain distance from this location. Our turbulent kinetic energy
is given by

TKE=µ(u2
f + v

2
f ), (4.2)
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where uf and vf are fluctuating quantities given by

uf = ū−µ(ū), (4.3)
vf = v̄ −µ(v̄), (4.4)

and where µ(a) implies the spatial mean of a field variable a. We note that the
components of velocity u, v are computed by second-order accurate central finite-
difference implementations of

ū=
∂ψ̄

∂y
, v̄ =−

∂ψ̄

∂x
. (4.5a,b)

In a similar manner the variance of vorticity, at each time step, is computed using

σ 2(ω̄)=µ((ω̄−µ(ω̄))2). (4.6)

In all the following assessments, the proposed framework is denoted as ML (and
specified to be deployed as a classifier or a blender) and it is compared to the AD and
DS models. We remind the reader that the framework utilizes the static Smagorinsky
model (denoted SM) with Cs = 1.0 within its formulation but is assessed against
the dynamic Smagorinsky (DS) approach. The reader may note that the value of
Cs= 1.0 proves over-dissipative for this particular test case as shown in Maulik et al.
(2019). A test-filter ratio of two is utilized in our DS simulations along with the
selection of a standard trapezoidal filter (San 2014). We also note that the static
Smagorinsky model with a prior information about Cs = 0.18 yields qualitatively
similar results to those obtained by the DS model in this particular test case (i.e.
only the DS results are provided in our analysis and we refer to Maulik et al. (2018)
for assessments with various Cs values). Besides, once we consider the cost and ease
of use criteria (Pope 2004), probably the static Smagorinsky model with appropriately
selected model coefficient (e.g. Cs ≈ 0.18) would be a better option in this particular
test case due to its negligibly small overhead to the computational cost, however
it provides a simplified test bed to assess the performance of our classification
framework systematically when there is no a priori information on model parameters.

4.1. Model classification
In this section, we deploy our learning framework as a classifier which spatio-
temporally switches between three closure modelling hypotheses during flow evolution.
Figure 4 shows the performance of our proposed framework for the forward
deployment of the Kraichnan turbulence problem in the form of energy spectrum
predictions at t= 4. For comparison, no-model results (denoted UNS), the DS method
and AD are also shown along with DNS spectra. One can observe that the classifier
balances the dissipative natures of the SM and AD hypothesis to obtain a performance
similar to the that of the DS approach. While at the lower wavenumbers, the AD
procedure seems to be more accurate in statistical capture, the higher wavenumbers are
stabilized adequately by the classifier. We would like to note that the SM hypothesis
with Cs = 1.0 is highly dissipative and the classifier avoids its deployment to a large
degree for improved a posteriori performance. We clarify that for spectral cutoff
filtering, FDNS spectra and DNS spectra are identical till the grid cutoff wavenumber
(Maulik et al. 2018).
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FIGURE 4. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 32 000 at t= 4 and at N2

= 2562 degrees of freedom.
The proposed framework (deployed as a classifier) balances the dissipative natures of the
AD and the DS models.
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FIGURE 5. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re = 32 000 at t = 4 and at N2

= 2562 degrees of freedom. It is
observed that AD performs better in the near region whereas the proposed framework
behaves similar to the DS approach.

Figure 5 details vorticity structure function assessments in our domain where
assessments with FDNS show that the proposed framework is adequately capable of
stabilizing turbulence correlations at t = 4. We note that the structure functions are
predicted more accurately by AD at low values of r whereas the proposed classifier
behaves similar to a DS implementation, thereby indicating a dynamic dissipation
on the grid. It may be due to the adaptive dissipation prioritizes noise removal and
thus introduces errors at low values of r as seen through stable structure functions at
saturation (i.e. at higher values of r). A further assessment is deployed in the form
of time histories of TKE and σ 2(ω̄) as shown in figure 6. Once again, the classifier
is seen to have a varying trend in TKE predictions compared to the AD and DS
techniques indicating varying dissipation strengths. The vorticity variance predictions
are also seen to be balanced between that of the DS and AD models indicating the
balance of dissipative tendencies.
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FIGURE 6. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re= 32 000 at N2

= 2562 degrees of freedom. The proposed method can
be seen to adapt between the behaviour of the AD and DS techniques.
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FIGURE 7. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 64 000 at t= 4 and at N2

= 2562 degrees of freedom.
This assessment displays closure effectiveness for a Reynolds number not utilized in the
training data.

We proceed by performing a thorough validation of our learning framework by
assessing its performance for prediction tasks that it has not been exposed to in
training. This is established by testing closure efficiency for a Reynolds number
of 64 000. We remind the reader that map optimization was performed solely for
Re = 32 000 and this represents an additional validation of the learning. Kinetic
energy spectra for this experiment are shown in figure 7 where it is observed that
the classifier performs in a very similar fashion to the Re = 32 000 test case with
AD performing more efficiently at the lower wavenumbers of the inertial range but
the ML approach stabilizing high-wavenumber noise effectively. This indicates that
the learning has generalized, at least on the current degree of coarse graining. We
also perform additional assessments such as those shown in figure 8 and figure 9.
The former shows the vorticity structure function trends for this out-of-training range
learning assessment and the latter shows the time histories of TKE and σ 2(ω̄). Very
similar behaviour for both these assessments is obtained when compared to the
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FIGURE 8. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re= 64 000 at t= 4 and at N2

= 2562 degrees of freedom. It is observed
that solely AD performs better in the near region whereas the proposed framework behaves
similarly to the DS approach. The behaviour is similar to that observed for within training
data regime deployment.
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FIGURE 9. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re= 64 000 at N2

= 2562 degrees of freedom. The proposed method can
be seen to adapt between the behaviour of the AD and DS techniques and acts as an
additional validation for deployment to different Reynolds numbers.

Re= 32 000 test case with time variation in trends seen in TKE and vorticity variance.
It can be clearly seen from figure 9 that the proposed ML approach does not yield
monotonically decreasing TKE for the present decaying turbulence problem and
additional physical constraints might be incorporated either in training or deployment
phases, a topic we would like to investigate further in our future studies.

The aforementioned test cases validated the learning of the classifier on different
control parameters (and flow evolutions) given by the Reynolds number. We
proceed by assessing the performance and stability of the classifier on a reduced
degrees-of-freedom evolution given by N2

= 1282. This test was to examine if the
classifier could retain a viable learning for deployment on slightly different grid
support. Figure 10 shows the kinetic-energy spectra for a deployment at this reduced
degrees of freedom at a Reynolds number of 32 000. It is observed that the proposed
classifier is able to avoid inaccuracies related to AD’s lack of dissipation. Indeed, it
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FIGURE 10. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 32 000 at t= 4 and at N2

= 1282 degrees of freedom.
This assessment displays closure effectiveness for a coarse-grained resolution not utilized
in the training data.
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FIGURE 11. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re= 32 000 at t= 4 and at N2

= 1282 degrees of freedom. It is observed
that solely AD performs better in the near region whereas the proposed framework behaves
similar to the DS approach. The behaviour is similar to that observed for within training
resolution deployment.

is well known that AD requires a sufficiently fine resolution in comparison to the
eddy-viscosity hypothesis-based models for appropriate utilization of the underlying
iterative inverse filtering (Guermond, Oden & Prudhomme 2004; Germano 2015).
A similar trend may also be observed in figure 11 with the vorticity structure functions
where once again the AD technique proves accurate at lower distances in comparison
the DS and the ML methods. The ML classifier however is slightly more accurate
than the DS approach. The time histories for TKE and vorticity variance, shown in
figure 12, display a greater amount of variation in the classification framework with
TKE values oscillating but remaining close to the DNS results. It must be noted that
the no-model and AD hypotheses prevent the classifier from going into a fully SM
deployment which is highly dissipative. This explains the similarity with DS results
in terms of spectra and vorticity variance.
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FIGURE 12. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re= 32 000 at N2

= 1282 degrees of freedom. The proposed method can
be seen to adapt between the behaviour of the AD and DS techniques and acts as an
additional validation for deployment to similar coarse-grained resolutions.

Time N2
= 5122 N2

= 2562 N2
= 1282 N2

= 642 N2
= 322

t= 1 65.77 63.04 56.51 52.17 47.65
t= 2 60.89 60.47 61.02 55.62 41.99
t= 3 68.05 65.08 61.54 53.32 46.29
t= 4 63.93 66.04 60.24 48.33 48.54

TABLE 1. Classification accuracy percentages for different grid resolutions a priori to
illustrate how accurately our base learning can predict correct labels. Accuracies are seen
to drop when resolutions are coarsened radically. However, some learning is retained as
evidenced by accuracies greater than 33 %.

In addition to the test case with a slightly reduced grid resolution, we also perform
a thorough grid-dependence check on the accuracy of our classification framework as
shown in table 1. We perform a hypothesis segregation (as introduced previously) to
label all points on a coarse grid with an optimal closure hypothesis and assess if the
learning at N2

= 2562 is able to categorize them appropriately. It can be seen that
accuracies around the same resolution as that of the training data are approximately
similar to validation accuracy during network optimization. However, on intense coarse
graining, accuracies are seen to drop significantly. However, we note that even at the
coarsest resolution of N2

= 322, accuracies greater than 33 % indicate some form of
learning retention.

We also determine the effect of network deployment in the presence of numerical
errors as shown in table 2 where it can be seen that a significant difference in
hypothesis choices is observed. In particular, the a posteriori deployment of the
classifier is seen to utilize a greater proportion of the turbulence closure hypotheses,
in comparison to the no-model ones. This may be considered as proof of the classifier
detecting greater stabilization requirements due to numerical error build-up. It is
observed that the AD approach shows a greater increase in deployment than SM.
This may be to offset the rather large inaccuracies of the lower wavenumbers in
the exceptionally dissipative SM approach. Understanding the nature of classifier
adaptation in the presence of numerical errors is an interesting subject of future
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Time A priori A posteriori
AD SM No-model AD SM No-model

t= 1 22.43 21.69 55.87 29.94 26.34 43.72
t= 2 22.31 21.08 56.60 29.17 25.37 45.45
t= 3 21.37 20.84 57.78 28.68 25.07 46.25
t= 4 19.49 22.56 57.94 28.45 25.38 46.17

TABLE 2. Classification percentages in a priori and a posteriori. One can see deviation
from trends due to numerical error accumulation (and greater utilization of closure
classifications for subsequent stabilization). We note that an N2

= 2562 is utilized for this
assessment.

research that may aid in improved decision making frameworks. We complement
the data in table 2 by outlining the classification percentages of different hypotheses
plotted against time for our three a posteriori deployments in figure 13. One may
notice that the deployment of the framework at the coarser resolution of N2

= 1282

requires a higher degree of SM and AD classifications for successful stabilization.
All experiments are seen to show a gradual increase in closure requirement as scale
separation grows until they reach a level of saturation that is aligned with the slow
turbulence decay.

As a final qualitative analysis of our classifier, we plot a posterior contours
from forward deployments at N2

= 2562 and Re = 32 000. In figure 14, vorticity
contours from the ML, DS, AD and UNS simulations are shown to assess the
stabilization effect of the different frameworks. The classifier can be seen to stabilize
high-wavenumber noise adequately, in a manner similar to DS as previous statistics
have reflected. The AD approach may be observed to be contaminated with noise
that may potentially be harmful for long-time integration.

4.2. Model blending
In this section, we deploy our learning in a different manner by utilizing the outputs
(i.e. the conditional probabilities of each hypothesis) as a pre-multiplier of the
prediction of each modelling hypothesis. We utilize this formulation instead of the
direct prediction of sub-grid contribution coefficients by observing that a greater
degree of stability is imparted to the flow evolution. Indeed, direct regression
with sub-grid quantities has been seen to require a posteriori post-processing for
stability (Maulik et al. 2018, 2019) due to energy accumulation in the coarse-grained
super-grid (when negative eddy viscosities are predicted effectively). We note that
the various clipping approaches are common in LES practices (Sagaut 2006) to
avoid numerical instabilities. Indeed, within ML-based regression studies, one can
simply use a rectified-linear activation function for the output layer (i.e. clipping
negative values) when predicting data-driven eddy-viscosity distribution from an
ANN architecture. In our classification framework, we recognize (as a limitation),
that the utilization of a conditional-probability outputs to linearly combine turbulence
modelling predictions from different hypotheses digresses from the core idea of a
categorical cross-entropy error minimization. While the loss function used for training
our map predicts conditional probabilities for each turbulence closure scenario, we
interpret these probabilities as coefficients for the three closure models to set up a
projection basis for the final value of the closure. However, as results shall show, the
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FIGURE 13. (Colour online) The a posteriori classification percentages of the various
modelling hypotheses for our three forward deployments. In all deployments it is observed
that the utilization of AD and SM increases as the scale separation grows and saturates for
the slow decay. Noticeably, the deployment at N2

= 1282 necessitates a higher proportion
of AD and SM classifications for improved stabilization.

proposed method acts as an effective instrument for blending models in a posteriori
without the requirement of any truncation for numerical stability. We would also like
to emphasize here that the same learning is applicable for both classification and
blending. We perform a similar set of assessments as outlined in § 4.1.

Figure 15 shows the performance of the blending formulation for a Reynolds
number of 32 000 and at t= 4 with N2

= 2562 degrees of freedom with kinetic-energy
spectra. It is observed that the proposed procedure recovers a dissipative behaviour
that is very similar to the DS approach. This is due to balancing the coefficients
of the AD and SM predictions which adapt to the dynamic dissipation requirement
of the flow. Overall, it is observed that the framework behaves in a similar manner
to the classifier presented previously with dissipation preventing the accumulation of
high-wavenumber errors but causing a mismatch in the inertial range spectrum capture.
However, the dissipation is dynamic and it prevents the overwhelming damping of the
SM deployment by balancing with the AD predictions adaptively. This is reflected in
figure 16 as well where the vorticity structure functions once again show that the AD
method is more accurate at lower values of r but the blending allows for a prediction
akin to the DS technique. Figure 17 shows the time histories of the TKE and the
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FIGURE 14. (Colour online) A posteriori contour results for Re=32 000 at N2
=2562 with

the proposed classification framework shown (a), DS shown (b), UNS shown (c) and AD
shown (d). These may be compared against FDNS contours qualitatively (in figure 1).

σ 2(ω̄) for the proposed framework compared to DS, AD and UNS. The vorticity
variance shows a trend close to the DS approach as expected but the TKE trends are
once again not uniform.

In a fashion similar to that employed in § 4.1, we deploy assessments of the
blending method to out-of-training predictions for validation. We start with an
a posteriori deployment at Re= 64 000 and N2

= 2562 degrees of freedom and observe
that the learning is sufficiently generalizable. This is observed from figure 18 where
kinetic-energy spectra show an aligned prediction to the previous test case. Vorticity
structure functions and time histories, shown in figures 19 and 20 respectively,
illustrate a similar behaviour to that observed for Re= 32 000. This implies that the
learning, whether utilized as a classifier or a blending mechanism, is generalizable.
We also deploy the blending framework at a different degree of freedom (N2

= 1282)
to assess it is stable to a slightly different grid support and trends similar to the
classifier are observed wherein the framework focuses on dissipation to stabilize
the higher wavenumbers in contrast with AD. This is observed in figure 21 for
kinetic-energy spectra and figure 22 for the vorticity structure functions. Figure 23
shows time-series quantities for this test case with both TKE and vorticity-variance
trends resembling the DS method closely. This also echoes with the performance of
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FIGURE 15. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 32 000 at t= 4 and at N2

= 2562 degrees of freedom.
The proposed framework (deployed as a model blending mechanism) behaves similar to
the DS approach at the inertial wavenumbers. We remind the reader that the blending is
dynamic between AD and SM.
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FIGURE 16. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re= 32 000 at t= 4 and at N2

= 2562 degrees of freedom. It is observed
that solely AD performs better in the near region whereas the proposed blending (once
again) behaves similar to the DS approach. We remind the reader that the blending is
dynamic between AD and SM.

the classifier where a coarser grid resolution led to a performance that was observed
to be biased towards the eddy-viscosity hypothesis. However, further studies are
necessary to quantify how the model orients itself to compensate for loss of grid
resolution or anisotropies in the flow configuration in a posteriori deployment.

To conclude this section we show qualitative results from the vorticity contours at
the final time of the numerical experiments for our proposed framework and their
benchmark counterparts in figure 24. This examination gives us an intuition of the
stabilization effect of the proposed framework and it is seen that the predictions
are very closely aligned with the DS results. We note that the blending calculation
of closure models may be considered an extension of traditional techniques which
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FIGURE 17. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re = 32 000 at N2

= 2562 degrees of freedom. The proposed blending
technique shows a varying TKE capture behaviour due to its adaptive dissipation. Note
that the blending is dynamic between AD and SM.
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FIGURE 18. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 64 000 at t= 4 and at N2

= 2562 degrees of freedom.
The proposed framework (deployed as a model blending mechanism) behaves similar to
the DS approach at the inertial wavenumbers. Note that the blending is dynamic between
AD and SM and training is performed using Re= 32 000 data alone.

directly couple structural methods (such as AD) and eddy-viscosity-based techniques
(such as dynamic Smagorinsky) (Habisreutinger et al. 2007).

5. Conclusions and significance
In this article we have proposed a novel data-driven strategy to dynamically assess

the utility of a turbulence modelling hypothesis in an LES framework. This strategy
is built on the hypothesis that DNS data may be utilized to assess areas where
structural or functional models may be more appropriate in an LES deployment. Our
hypothesis segregation and subsequent training culminates in a learning that may
deployed as a classifier of turbulence models at each point on the LES grid as well
as a blending technique for balancing turbulence models with different dissipative
strengths. When deployed as a classifier, our proposed framework may also predict a
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FIGURE 19. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re= 64 000 at t= 4 and at N2

= 2562 degrees of freedom. It is observed
that solely AD performs better in the near region whereas the proposed blending (once
again) behaves similar to the DS approach. We remind the reader that the blending is
dynamic between AD and SM and training is performed using Re= 32 000 data alone.
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FIGURE 20. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re= 64 000 at N2

= 2562 degrees of freedom. We remind the reader that
the blending is dynamic between AD and SM and training is performed using Re= 32 000
data alone.

‘no-model’ situation wherein no sub-grid source-term is deployed. When deployed as
a blending mechanism, the learning linearly combines the AD and static Smagorinsky
hypothesis premultiplied by their respective conditional probabilities to obtain another
hybrid dissipation mechanism. Both frameworks utilize the same learning and are
assessed through similar experiments a posteriori. Furthermore, a similar architecture
can be constructed to provide hybrid intelligent implicit LES approaches by toggling
between non-dissipative and dissipative numerical schemes, a topic we intend to
investigate further in a future study.

We have rigorously assessed the deployment of our machine learning strategy
through the utilization of a Kraichnan turbulence test case. Our assessments are made
for Reynolds number values both within and outside that utilized in training to ensure
that a generalizable turbulence closure has been developed. In addition, we have also
assessed if the proposed closure can be deployed on a coarser grid than one it was
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FIGURE 21. (Colour online) A posteriori kinetic-energy spectra (a) and compensated
kinetic-energy spectra (b) for Re= 32 000 at t= 4 and at N2

= 1282 degrees of freedom.
The proposed framework (deployed as a model blending mechanism) behaves similar to
the DS approach at the inertial wavenumbers. We remind the reader that the blending is
dynamic between AD and SM and training is performed using Re= 32 000 and N2

= 2562

data alone.
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FIGURE 22. (Colour online) A posteriori vorticity structure functions plotted against r (a)
and log(r) (b) for Re= 32 000 at t= 4 and at N2

= 1282 degrees of freedom. It is observed
that solely AD performs better in the near region whereas the proposed blending (once
again) behaves similar to the DS approach. We remind the reader that the blending is
dynamic between AD and SM and training is performed using Re= 32 000 and N2

= 2562

data alone.

trained for. The dissipative and scale-content capture of the proposed framework is
compared to the AD and DS techniques through the use of kinetic-energy spectra,
vorticity structure functions and time histories of TKE and vorticity variance showing
a dynamic dissipation akin to the DS. In particular, the statistical fidelity of the
data-driven frameworks is seen to be inferior to the AD technique, which provides
better estimates of the kinetic-energy spectra at lower wavenumbers and also provides
most accurate estimates of the vorticity structure function. However, the focus on
high-wavenumber noise attenuation leads to no grid cutoff error accumulation and the
statistical results of the ML models are very similar to DS in all assessments. Also, it
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FIGURE 23. (Colour online) Time histories for turbulent kinetic energy (a) and vorticity
variance (b) for Re = 32 000 at N2

= 1282 degrees of freedom. The proposed blending
technique behaves more dissipatively due to the reduced grid support. We remind the
reader that the blending is dynamic between AD and SM and training is performed using
Re= 32 000 and N2

= 2562 data alone.

is observed that the data-driven closure (whether deployed as a classifier or a blending
instrument) adequately captures the k−3 scaling expected for the kinetic-energy spectra
for the Kraichnan turbulence case and attempts to strike an optimal balance between
the dissipative functional kernel and the noise-prone structural kernel. This behaviour
is interesting as the model classifies solely between AD and the static Smagorinsky
hypothesis indicating the extreme dissipation of the latter at Cs = 1.0 is effectively
alleviated by the spatio-temporal blending. Our closure, thus, attempts to blend the
strengths of both modelling strategies to overcome their individual weaknesses while
attempting to preserve trends from DNS.

In terms of future opportunities for this idea, the data-driven element of closure
identification lends to the potential development of closures that may discern the
physical characteristics of different flow scenarios. However, some challenges
associated with progress in this research include considerations of invariance
properties, which we have identified as a next step. In order to generalize adequately,
Galilean invariance must be built in to the data-driven closure described in this study.
This is a limitation of the current approach which does not explicitly enforce these
considerations. For instance, research is underway to investigate the response of this
system to invariant inputs of localized stencils (rather than raw field variables) to
ensure that predictions are invariant as well. We may also look at augmenting our
input data set through the use of transformations which make the classifier resistant to
extrapolation (Ling et al. 2016a). We note that the model blending idea proposed here
can be devised to ensure invariance properties by choosing a suitable projection basis
(Ling et al. 2016b). Our frameworks may then be assessed for transformed validation
data. We expect an optimal formulation that relies on invariant inputs to map to a
basis of invariant outputs for predicting an appropriate closure as a culmination of
this study. The effect of input spaces (invariant or otherwise) on generalizability and
accuracy must also be studied. This is an extension to the current formulation which
takes a rudimentary approach of exposing the framework to all available grid-resolved
information in the local stencil. Another major limitation of our study is the finite
number of assessments in decaying two-dimensional turbulence where the vortex
stretching mechanism is absent.
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FIGURE 24. (Colour online) A posteriori contour results for Re = 32 000 at N2
= 2562

with the proposed blending framework shown (a), DS shown (b), UNS shown (c) and AD
shown (d). These may be compared against FDNS contours qualitatively (in figure 1).

While the computational costs of the proposed framework have not been studied
in detail, an efficient deployment of the proposed framework would need graphical
processing unit integration of any practical CFD simulation. The latter would lead to
efficient learning queries since all the spatial domain information would be available to
the common memory. Overall, without performing any additional effort by optimizing
our deployment code, the proposed ML approach adds computational overhead
that is approximately 2.5 times greater than that of required for simulating the
problem with the DS model due to arithmetic computations within 5 hidden-layer
network architecture at each time step. In practice, the trade-off between the training
accuracy (hence the number of layers and the number of neurons at each layer)
and computational efficiency of the ML-based models should be carefully analysed.
A priori hyper-parameter search might yield a deep network architecture for an
accurate training representation, but it might provide a costly deployment model for
forward simulations. This would suggest to perform feature selection and simplify
network architecture as recommended by Wang et al. (2018). Another future direction
identified in this research is the exposure of different two-dimensional turbulence
physics to the classification framework to identify if closure choices can also be
influenced by the training data regime. Success in that regard would allow for ‘train
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and forget’ closures in problems that have unsteady physics that span fundamentally
different turbulence modelling requirements.
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