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Abstract

Human operators of real-world co-robots, such as excavator, require extensive
experience to skillfully handle these complicated machines in uncertain safety-
critical environments. We consider the problem of human-robot collaborative
learning and task execution, where efficient human-robot interaction is critical to
safely and efficiently accomplish complex tasks in uncertain environments. Our
collaborative learning algorithm enables a construction co-robot to learn latent
task subgoals from the demonstrations of skilled human operators which can then
be used to guide novice human operators in completing complex tasks under un-
certainty. The effectiveness our algorithm is demonstrated through experimenta-
tion on a scaled model of an excavator with guided and unguided human operators.
Our results demonstrate that when the co-robot’s inferred subgoals are communi-
cated back to the novice human operator, task performance significantly improves.

1 Introduction
We consider the problem of human-robot collaborative learning and task execution where effi-
cient human-robot interaction is essential to safely and efficiently perform construction tasks using
co-robots. Skilled human operators are good at decomposing a loosely defined task (such as loading
a truck) into a series of actionable goals. Our goal is to develop a robust solution framework that
enables co-robots to (i) learn to decompose loosely defined task into semantics-based subgoals by
learning from skilled human operators and (ii) guide novice operators in efficiently decomposing
the task to speed up their learning.

We utilize the construction excavator as a co-robot platform to demonstrate the ideas, formulate
the collaborative learning problem, and develop algorithm. To corroborate the results we show
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Figure 1: Overview of the LfD and Instruction Framework

Figure 2: An excavator co-
robot and its human opera-
tor performing a truck load-
ing task. (Image credit
http://www.hulcher.com/)

Figure 3: Excavator: 4-
DOF arm, Input: End-effector
joint (h, r, θ) w.r.t base frame
and bucket angle, Observa-
tion: Position of actuators

Figure 4: Experimental set-
up: a) Motion Capture Sys-
tem, b) Scaled Excavator
Model, c) Display panel for
guided demos.

experimental implementation on a 1/14th scaled-model excavator on a benchmark truck-loading
operation performed by a number of guided and unguided human operators. Our approach is to use
tools from reinforcement learning, Markov decision processes, and cognitive engineering constructs.
Although these tools have been used in learning from demonstration in other areas, there is no
known application of these tools to construction robots or to facilitate collaborative learning between
co-robots and human operators. As such the contributions of this paper are: (i) A collaborative
goal and policy learning algorithm from human demonstration that is scalable to real-world multi-
input-output tasks, (ii) A computationally efficient Vector-valued Gaussian Processes Non-Bayesian
Clustering (VGP-NBC) algorithm for real time clustering of vector-valued motion primitives, (iii)
A semantically motivated instructional framework to train or assist novice users of construction co-
robots that lays the foundation for collaborative human co-robot learning, in which a co-robot can
transfer learned skills from experts to novice human operators. A block diagram of the presented
architecture is in Figure 1. In section 3 the formulation of the presented collaborative learning
architecture is laid out. The experimental results with a scaled excavator are discussed in section 4.

2 Related Work

Research in Learning from Demonstration (LfD) has focused on enabling robots to learn tasks
through task demonstration. LfD has been previously successful in teaching robots tennis swings
[14], walking gaits [10], and complex helicopter maneuvers [1]. Recent research has focused on
performing automatic segmentation of demonstrations into simpler reusable primitives [7, 8], and
then sequencing them in an intelligent manner by learning associated semantics [11].

Several approaches [8, 12] have proposed guidelines to sequence the segmented motion primitives.
The recent research by [11] has improved upon these existing methods by utilizing associated coor-
dinate frames of references or state visitation data to perform intelligent sequencing of segmented
motion primitives by means of learning associated semantics. In contrast we propose to utilize an
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intrinsic frame of reference, that is, a frame of reference which is natural and internal to many con-
struction co-robots, such as the end-effector joint frame (Figure 3) to enable semantically-associated
learning of motion primitives.

Currently, [9, 11] are regarded as the state of the art algorithms in policy segmentation. In [11],
the Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM) is used to perform off-
line auto-segmentation of time series data. However BP-AR-HMM is computationally intensive,
as it requires solving numerous state equations whose dimensions increase with the length of time,
hence affecting the scalability of the BP-AR-HMM. In [9], Dirichlet process mixture models are
used to partition the demonstration data and obtain simpler subgoals. However, this process requires
thousands of samples to infer the partitions by Gibbs sampling, which again leads to poor scalability.
We argue that a computationally efficient method that can perform auto-segmentation in real time is
required to enhance the applicability and utility of LfD approaches to the co-robotic domain.

3 Formulation

The goal of our work is to learn from an unsegmented demonstrations of a truck loading operation in
real time and generate automated guidelines for a novice operator who can then learn to accomplish
the same task. To that effect, the algorithm should be able to decompose the demonstrated task into
human-understandable motion primitives and also identify their sequence of execution.

3.1 Proposed Vector-valued Gaussian Processes and Non-Bayesian Clustering (VGP-NBC)
VGP : Time series data with multiple observations f ∈ RD can be modeled as a Vector-valued
Gaussian Process [3], f ∼ GP(m,K) where m ∈ RD is a vector whose components are the
mean functions md(x)

D
d=1 of each output and K is a positive matrix valued function with ND ×

ND entries. In our work the objective of VGP is to perform prediction over the sparse data set
obtained using Kernel Recursive Least Squares (KRLS) algorithm [4]. For a set of inputs X , the
prior distribution over the vector f(X) is given by f(X) ∈ N (m(X),K(X,X)), where m(X)
is a vector that concatenates the mean vectors associated to the outputs and the covariance matrix
K(X,X) is an ND × ND with entries (K(xi, xj))d,d′ , for i, j = 1, ..., N and d, d′ = 1, ..., D.
For a Gaussian likelihood, the predictive distribution and the marginal likelihood can be derived
analytically. The predictive distribution for a data set X∗ is [13]

p(f(X∗)|S, f,X∗, φ) = N (f∗(X∗),K∗(X∗, X∗)) (1)

with

f∗(X∗) = KT
X∗(K(X,X) + Σ)−1ȳ,

K∗(X∗, X∗) = K(X∗, X∗)−KX∗(K(X,X) + Σ)−1KT
X∗ , (2)

where Σ = Σ ⊗ IN , KX∗ ∈ RDXND has entries (K(x∗, xj))d,d′ for i, j = 1, ..., N and d, d′ =
1, ..., D and φ denotes a set of hyper-parameters of the covariance function. We use multi-output
separable kernels as in [3], the equivalent kernel matrix expression is K(x, x′) = k(x, x′)B, where
B ∈ RD×D is a symmetric positive semi-definite matrix.

VGP-NBC : Next we define the extension of the non-Bayesian clustering method used in GP-
NBC [2, 5, 6] to the case of clustering in VGP. Note that this extension is not straightforward, as it
requires additional insight to make clustering decisions, which then has dramatic impacts on cluster
formation and hence change point detection (CPD) and model re-identification.

Our algorithm maintains a set of points S which are considered unlikely to have arisen from the cur-
rent model Mc ∼ VGP(m(X),K(X,X)). For a VGP, the log likelihood of a set of D-dimensional
observation points yεRD can be evaluated as

logP (y|x,M) = −1

2
(y − µ(X∗))

T ΣX∗X∗(y − µ(X∗))− log|ΣX∗X∗ |1/2 + C (3)

where µ(X∗) = K(X,X∗)
T (K(X,X) + ω2

nI)−1Y is the matrix valued mean prediction us-
ing the model Mc and has the dimension N × D, N denotes the size of set X∗ (ε S) and
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Algorithm 1 VGP Clustering

Input: KRLS model (X,Y ), lps size l, model deviation η
Initialize VGP Model 1 for (X,Y ).
Initialize set of least probable points S = ∅.
while new data is available do

Update the KRLS data dictionary
Expand the current VGP model Mc using updated KRLS data
If data is unlikely with respect toMc, include it in S and build corresponding KRLS model KS

if |S| == l then
for each model Mi do

- Calculate D×D log-likelihood matrices of data set S with respect to each of the gener-
ated models Mi using (3)
- Calculate the Frobenius norm for each of these matrices and find lowest likelihood model
Mh, having lowest norm.
- Make Mh the current model Mc.
- Create new VGP MS from KS .
- KL← 1

l (log(S|MS)− log(S|Mc))
if ‖KL‖F > η then

Add MS as a new model.
end if

end for
end if

end while

ΣX∗X∗ = K(X∗, X∗) − K(X,X∗)
T (K(X,X) + ω2

nI)−1K(X,X∗) is the conditional variance
plus the measurement noise. The log-likelihood contains two terms which account for the deviation
of points from the mean, 1

2 (y− µ(X∗))
T ΣX∗X∗(y− µ(X∗)), as well as the relative certainty in the

prediction of the mean at those points log |ΣX∗X∗ |1/2. The set S is used to create a new VGP MS ,
which is tested against the current (Mc) as well as the existing models Mi using a non-Bayesian
hypothesis test to determine whether the new model MS merits instantiation as a new model. This
test is defined as

P (y |Mi)

P (y |Mj)

M̂i

R
M̂j

η (4)

where η = (1 − p)/p, and p = P (M1). If the quantity on the left hand side is greater than η, then
the hypothesis Mi (i.e. that the data y is better represented by Mi) is chosen, and vice versa. A
major difference in the extension to VGP-NBC is due to the fact that the left hand term in (4) is a
fraction of two D × D matrices, which makes it impossible to use (4) in our case. We calculate
the Frobenius norm of each of these D ×D matrices, justified by the fact that, being an entry-wise
norm, it allows us to consider the cumulative effect of deviations resulting from each observation
component interacting with itself as well as with each of the other D observations. The overall
algorithm is described in Algorithm 1.

3.2 METHODOLOGY
To demonstrate our approach of on-line learning for the benefit of an instruction framework, we
propose a novel method to first learn from the time series data available from a given unsegmented
demonstration and then assist a novice to perform the task. This approach uses a combination of the
KRLS algorithm [4] (to learn) and VGP-NBC to predict the next motion primitive to assist.

4 Simulation Results

Experiments were performed on a 1/14th scaled 345D Wedico excavator model, controlled by an
RDS 8000 Airtronics radio transmitter. The model robot lacked joint-angle encoders and internal
proprioception, so all the experiments were performed inside a motion capture facility to provide
real-time data to the algorithm. The experiment required human operators to execute two truck
loading cycles in succession. An ideal truck loading cycle is comprised of six different transition
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(a) Input data
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(b) Observation data

Figure 5: Demonstrated data for three cycles of the truck loading task with cluster segmentation
overlaid. Magnitude on the y-axis depicts absolute values.

(a) Flash card for Pose 1
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(b) Circles depicting cluster end
poses (Pose 1 is the extreme left) (c) Flash card for Pose 2

Figure 6: Pose changes associated with the changes in clusters. Flash cards in Fig (a) and Fig (b)
were used for instructions in assisted mode

poses, two are shown in figure 6. The data from the expert set of demonstrations was given as an
input to the algorithm 1. Next, we designed two sets of experiments to test and compare the perfor-
mance of novice users with and without the guidance framework. Before each test, the participant
learned the control scheme and was given a brief description about the truck loading task. In guided
mode, instructions were provided during the task on a display panel facing the operator.

4.1 On-line learning from Demonstration

On-line demonstration data for the truck loading task, made available by the motion capture system,
is processed by the algorithm (1), to cluster different motion primitives. Height, radius and theta of
the end-effector joint (h, r, θ) along with the bucket angle (figure 3), constituted the input data (figure
5a) to the algorithm, whereas the corresponding actuator positions represented the observations
(figure 5b). Data in figure 5 denotes one such sample task demonstration. The dotted vertical lines
in figure 5 denote demarcation of different clusters produced by the algorithm (1) in real time.

The model re-identification feature of VGP-NBC ensures that demonstration data which depicts
similar motion primitives is identified with previously clustered models, and hence is not reclustered
to form a new model. Across multiple demonstrations, sequence of these clusters is identified, which
was then associated with the end-effector poses as shown in figure 6. The algorithm was also tested
on data possessing variable temporal and spatial characteristics, and the key poses of the end-effector
identified by the algorithm were found to be similar, as shown in the figure 7.
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(a) Two cycles in 50 sec
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(b) Two cycles in 30 sec
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(c) One cycle in 30 sec

Figure 7: VGP-NBC segmentation of data set with different temporal and spatial characteristics.
Time (in tenths of a second) is shown on the x-axis
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(c) Performance compared over
two cycles of truck loading

Figure 8: Comparison between guided (G) and unguided modes (UG)

4.2 Instruction Framework

The cluster output of our algorithm matches with the actual end-effector poses which a human trainer
might utilize to train novice operators. Based on this result, we then demonstrate the instruction
framework, which is founded upon the on-line re-identification of clusters, coupled with the learned
sequence of clusters for a given task and the corresponding end-effector poses as illustrated in figure
1. We implemented this framework by providing instructions to the operator performing the task, in
the form of flash cards on a display panel, which represent the end-effector poses corresponding to
the identified clusters. These flash cards depicted the current pose as well as the target pose, along
with the required control actuation as seen in figure 6.

Box plots depict the mean completion time, total number of actions, and erroneous actions for the
two cases as shown in figure 8a & 8b; these figures clearly show that (except for a single outlier),
the task was performed more efficiently in the “guided” mode as compared to the “unguided” mode.
Figure 8c compares performance over the two cycles of truck loading operation. Unguided operator
seems to improve their performance over the next cycle, but only manage to match the first cycle
performance of guided operators. Further insights into the proposed instructional framework will
be generated as a result of psychometric analysis that corroborates subjective feedback from the
participants of guided demonstrations.

5 Conclusion

Our architecture enables the co-robot to learn latent task subgoals through demonstration from
skilled human operators and then use that information to guide novice human operators in com-
pleting complex tasks. Our experiment with a scaled model excavator demonstrated that when the
co-robot inferred subgoals are communicated back to the novice human operator, task performance
significantly improves. Psychometric analysis should yield key insights into ideal human-robot in-
teraction strategies for collaborative learning and task execution.
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