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There have been many advances in the artificial intelligence field due to the emergence of deep learning. In
almost all sub-fields, artificial neural networks have reached or exceeded human-level performance. However,
most of the models are not interpretable. As a result, it is hard to trust their decisions, especially in life and
death scenarios. In recent years, there has been a movement toward creating explainable artificial intelligence,
but most work to date has concentrated on image processing models, as it is easier for humans to perceive
visual patterns. There has been little work in other fields like natural language processing. In this paper, we
train a convolutional model on textual data and analyze the global logic of the model by studying its filter
values. In the end, we find the most important words in our corpus to our model’s logic and remove the
rest (95%). New models trained on just the 5% most important words can achieve the same performance as
the original model while reducing training time by more than half. Approaches such as this will help us to
understand NLP models, explain their decisions according to their word choices, and improve them by finding

blind spots and biases.

1 INTRODUCTION

In the big data era, traditional naive statistical models
and machine learning algorithms are not able to
keep up with the growth in data complexity. Such
algorithms are the best choice when our data size is
limited and nicely shaped in tabular formats. Pre-
viously, we were interested in analyzing structured
data in databases, inserted by an expert, but now we
use machine learning in every aspect of life. Most
of the data is unstructured, such as images, text,
voice, and videos. In addition, the amount of data has
increased significantly. Traditional machine learning
algorithms cannot handle these types of data at our de-
sired performance level. Artificial Neural Networks
(ANNs) have undergone several waves of popularity
and disillusionment stretching back to 1943. Re-
cently, due to increases in computing power and data
availability, the success and improvement of ANNs
and deep learning have been the hot topic in machine
learning conferences. In many problem areas, deep
learning has reached or surpassed human perfor-
mance, and is the current champion in fields from
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image processing and object detection to Natural
Language Processing (NLP) and voice recognition.

Although deep learning has increased perfor-
mance across the board, it still has many challenges
and limitations. One main criticism of deep learning
models is that they are black boxes: we throw data
at it, use the output and hope for the best, but we do
not understand how or why. This is less likely to be
the case with traditional statistical and machine learn-
ing methods such as decision trees. Such algorithms
are interpretable and easy to understand, and we can
know the reasoning behind the decisions they make.
Explainability is very important if we want people to
rely on our models and trust their decisions. This
becomes crucial when the models’ decisions are life-
and-death situations like medicine or autonomous ve-
hicles, and it is the reason behind the trend toward ex-
plainable artificial intelligence. In addition to boost-
ing users’ trust, however, interpretability also helps
developers, experts and scientists learn the shortcom-
ings of their models, check them for bias and tune
them for further improvement.

Many papers and tools have recently contributed
to explainability in deep learning models, but most
of them have concentrated on machine vision prob-
lems, as images are easier to visualize in a 2-
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dimensional space. They can use segmentation and
create heatmaps to show users which pixel or object
in the image is important, and which of them caused
a specific decision. Humans can easily find visual
patterns in a 2-dimensional space. However, there is
also a need for model interpretability in other con-
texts like NLP, the science of teaching machines to
communicate with us in human-understandable lan-
guages. As NLP data mostly consists of texts, sen-
tences and words, it is very hard to visualize in a 2-D
or 3-D space that humans can easily interpret, even
though visualization of a model is an important part
of explainable Al

Deep learning networks have various architec-
tures. Convolutional neural networks (CNNs) were
primarily designed for image classification but can be
applied to all types of data. Recurrent neural networks
(RNNSs) are often a good choice for time-series data;
Long Short Term Memory (LSTMs) and Gated Re-
current Units (GRUs) are common forms of RNN.
Many scientists prefer to use LSTMs on NLP prob-
lems, as they are constructed with time series in mind.
Each word can be looked at as a time step in a sen-
tence. 1-dimensional CNNs can also be used on tex-
tual data. They are faster than LSTMs and perform
well on well-known NLP problems like text classifi-
cation and sentiment analysis.

In this paper we have created a simple 1-D CNN
and trained it on a large labeled corpus for sentiment
analysis, which aims understand the emotion and se-
mantic content of text and predict if its valence is pos-
itive or negative. We then deconstructed and analyzed
the CNN layer filters. We tried to understand the fil-
ter patterns and why the learning algorithm would
produce them. The first result indicates that the fil-
ter weights cover around 70% of a layer’s informa-
tion, while their order covers only 30%. As a result,
randomly shuffling filters causes a particular layer to
lose 30% of the accuracy contributed by a particular
layer. We also used activation maximization to cre-
ate an equation to find the importance of each word
in our corpus dictionary to the whole model. This im-
portance rate is not specific to a single decision but
to the whole model logic. We were able to order the
word corpus according to their decision-making util-
ity, and used this information to train a new model
from scratch on only the most important words. We
observed that a model built from the most important
5% of words is just as accurate as one that uses the
whole corpus, but input size and training time are re-
duced significantly.

Interpreting Convolutional Networks Trained on Textual Data

2 RELATED WORK

Explainable artificial intelligence (XAI) (Gunning,
2017) helps us to trust AI models, improve them
by identifying blind spots or removing bias. It in-
volves creating explanations of models to satisfy non-
technical users (Du et al., 2019), and helps develop-
ers to justify and improve their models. Such models
come in various flavors (Adadi and Berrada, 2018);
they can provide local explanations of each predic-
tion or globally explain the model as a whole. Layer-
wise relevance propagation (LRP) (Bach et al., 2015;
Montavon et al., 2018) matches each prediction in the
model to the input features that have caused it. LIME
(Ribeiro et al., 2016) is a method for providing lo-
cal interpretable model-agnostic explanations. These
techniques help us to trust deep learning models.

Most of the XAl community has concentrated on
image processing and machine vision as humans find
it easy to understand and find patterns in visual data.
Such research has led to heat maps, saliency maps (Si-
monyan et al., 2013) and attention networks (Wang
et al., 2017). However, other machine learning fields,
such as NLP, have not yet seen nearly as many re-
search efforts. There have been many improvements
in NLP models’ performance in recent years (Col-
lobert et al., 2011) but very few of them concentrate
on creating self-explanatory models.

Arras (Arras et al., 2017) tried to find and high-
light the words in a sentence leading to a specific clas-
sification using LRP and identified the words that vote
out the final prediction. This can help identify when a
model arrives at a correct prediction through incor-
rect logic or bias, and provide clues toward fixing
such errors. These kinds of local explanations help
to confirm single model predictions, but methods for
understanding the global logic of models and specific
architectures are necessary to provide insight for im-
proving future models. Such techniques are model-
specific and dependent on the architecture used.

It is a common belief that RNNs, and specifically
LSTMs (Hochreiter and Schmidhuber, 1997) are ef-
ficient for NLP tasks. 1-dimensional CNNs are also
used for common NLP tasks like sentence classifica-
tion (Kim, 2014) and modeling (Kalchbrenner et al.,
2014). Le (Le et al., 2018) shows how CNN depth
affects performance in sentiment analysis. Yin (Yin
et al., 2017) compares the performance of RNNs and
CNNs on various NLP tasks. Wood (Wood-Doughty
et al., 2018) shows that CNNs can outperform RNNs
on textual data, in addition to being faster.

There have been many works trying to interpret
and visualize CNN models. Most of them tried to
visualize the CNNs on famous visual object recog-

197



ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

nition databases like ImageNet (Zeiler and Fergus,
2014). Four main methods have been used to visual-
ize models in image processing tasks: activation max-
imization, network inversion, deconvolutional neural
networks, and network dissection (Qin et al., 2018).
Yosinski (Yosinski et al., 2015) has created tools to
visualize features at each layer of a CNN model in im-
age space. Visualization and interpretation for other
types of data, such as text, are nowhere near as well-
developed, but there have been a few attempts. Choi
(Choi et al., 2016) tried to explain a CNN model that
classifies genres of music, and showed that deeper
layers capture textures. Xu (Xu et al., 2015) used
attention-based models to describe the contents of im-
ages in natural language, showing saliency relation-
ships between image contents and word generation.

The most challenging part in visualizing NLP
models is that after tokenizing textual data with avail-
able tools like NLTK (Bird et al., 2009), each token
or word is represented by an embedding (Maas et al.,
2011), (Mikolov et al., 2013), (Rehurek and Sojka,
2010). An embedding is a vector of numbers that rep-
resent a word’s semantic relationship to other words.
Pre-trained embeddings like GloVe (Pennington et al.,
2014) are available that are trained on a huge corpus.
However, they are not understandable by humans, and
it is very hard to explain models that are built upon
them. Li (Li et al., 2015) introduced methods illus-
trate the saliency of word embeddings and their con-
tribution to the overall model’s comprehension. Ra-
jwadi (Rajwadi et al., 2019) created a 1-D CNN for
a sentiment analysis task and used a deconvolution
technique to explain text classification. They estimate
the importance of each word to the overall decision
by masking it and checking its effect on the final clas-
sification score.

In our paper, we also create a 1-D CNN for sen-
timent analysis on the IMDb dataset (Maas et al.,
2011). However, instead of creating a local explana-
tion for each prediction and decision, we describe the
whole model’s logic and try to explain it in a layer-
wise manner by studying the filters of the trained
model.

3 TECHNICAL DESCRIPTION

3.1 Dataset Introduction and
Preprocessing

The dataset used throughout this paper is the IMDb

Large Movie Review Dataset (Maas et al., 2011),
which is a famous benchmark for NLP and sentiment
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analysis in particular. It contains around 50,000 bal-
anced, labeled reviews, rated either positive or neg-
ative (no neutral reviews are included). We split the
data into training and test sets with a ratio of 90:10
respectively.

In our preprocessing step, we used NLTK (Bird
et al., 2009) to tokenize the reviews, remove punctu-
ation, numerical values, HTML tags and stop-words.
We also removed words that are not in the English
dictionary (like typos and names). We set the se-
quence length to 250: sentences longer than that were
truncated, while shorter ones were padded with zeros.
After preprocessing, the corpus dictionary contained
23,363 words.

To transform the textual data into numerical val-
ues that can be used by our models, we used
Word2Vec (Rehurek and Sojka, 2010) to create 100-
dimensional embeddings for each word. This high-
dimensional space is intended to represent seman-
tic relationships between each word. Each review is
therefore represented as a 250 x 100 matrix and a bi-
nary target value.

3.2 Basic CNN Model Setup

We use a 1-dimensional CNN for the sentiment analy-
sis problem. The architecture is presented in Table 1.
The embedding layer contains parameters for each of
100 dimensions for each word in the corpus, plus one
(for unknown words). The embeddings are untrain-
able in the CNN, having been trained in an unsuper-
vised manner on our corpus, and we did not want to
add an extra variable to our evaluation. The first con-
volutional layer has 32 filters with size of 5 and stride
of 1. The second has 16 filters with size of 5 and
stride of 1. Both max-pooling layers have size and
stride of 2. All computational layers use the ReLu ac-
tivation function. The output layer’s activation func-
tion is sigmoid (as our target is binary). Our models
are trained for 5 epochs with a decaying learning rate
of 0.001. The hyper-parameters in our model were
selected after performing a random search technique
in order to get a decent performance, but in each spe-
cific field and different data sets, more in depth hyper-
parameters search can be performed.

3.3 Analyzing and Interpreting
Convolutional Layer Filters

In order to understand the logic of our CNN
model, we studied the first convolutional layer’s filter
weights. We created three new models with identi-
cal architecture to our baseline model. In two of these
new models, we copy the weights of the basic model’s



first convolutional layer and make them untrainable,
then initialize the rest of the layers randomly and train
normally. We then shuffled the filter weights in the
first layer, either within each filter or across the whole
set of filters. In the last model, we randomly initiate
the first layer’s weight and freeze it.

3.4 Word Importance through
Activation Maximization

It is difficult to analyze the actual values learned by
the convolutional filters. If we cannot interpret them
as they are, we are not able to follow the reasoning be-
hind a model’s decisions, either to trust or to improve
them. As a result, we wanted to concentrate on the
input space, and check each word’s importance to our
model. Previous research has focused on finding sig-
nificant words that contribute to a specific decision.
This is helpful, but it only demonstrates local reason-
ing specific to a single input and the model’s decision
in that instance. We are interested in global explana-
tions of the model, so that the model can convey its
overall logic to users. To do so on our CNN model,
we applied Equation 1, which provides an importance
rating for each word, according to our first convolu-
tional layer’s filters.

importance =

F S I
w; *x Filter r444; | |w € Corpus, Filter
{z Y. 3 i+ Fitery o [ & Corp }
f=ls=1i=1
(D

In equation 1, F is the number of filters, S is the
size of filters, and [ is the embedding length. w is a

Table 1: Basic CNN Model.
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word embedding vector with a length of /. Corpus is
a matrix of our entire word embedding of size m * I,
in which m is the count of unique words in our cor-
pus dictionary. Filter is a 3-D tensor of size F S x* 1.
This equation calculates the sum of activations of all
filters caused by a single word. In our models, Corpus
contains 13,363 x 100 elements, each w is a vector of
100 numbers, and the Filter size is 32 x 5 x 100.

The above equation can be used to compute an im-
portance rating for each and every word in our cor-
pus according to our model’s logic. One of the ben-
efits of studying these ratings is that we can under-
stand what types of words affect our model’s deci-
sions most strongly. To investigate this further, we
dropped unimportant words and trained new models
on a subset of data containing just the most impor-
tant vocabulary. By doing so, we learn from our basic
model and can inject its insights to new models, to
develop faster and better-performing ones. In order to
prove our hypothesis, we created a new model trained
on 5% of the most important words and compared its
performance and training time to three baseline mod-
els. In all of these models the architecture is the same
and we train the embedding weights as well. Our first
baseline model uses 100% of the words in the cor-
pus, our second uses 5% of words chosen randomly,
and the third uses all of the words except the 5% most
important, in other words, the least important 95% of
words.

4 EXPERIMENTAL RESULTS

4.1 Performance of Models with
Shuffled Filters

Layer Output Number of After creating three models with the same architecture
Type Shape Parameters as our basic model, we set their first convolutional
p p layer weights and make them untrainable. The rest of
Input (7,250) 0 the model is trained normally for five epochs. Table 2
Embedding (2,250,100) 2,336,400
Convolutional-1 (7,246,32) 16.032 Table 2: Comparison of models with shuffled filters. Accu-
, s ’ racy improvement represents the increase in test accuracy
Max Pooling-1 (7,123,32) 0 compared to the following model.
Convolutional-2  (2,119,16) 2,576 Train Test Accuracy
Max Pooling-2 (?,59,16) 0 Accuracy Accuracy improvement
Flatten (2,944) 0 Basic Model 93.24 83.19 1.82
Fully connected (7,128) 120,960 Sthﬁe within 90.18 8137 202
Output (2,1) 129 ‘;1“3;
ulfle across
Total Parameters 2,476,097 ilters 87.64 7845 10.52
Trainable Parameters 139,697 First layer random 8111 67.93 17.93
Non-Trainable Parameters 2,336,400 initialization
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Figure 1: Comparison of models with shuffled filters.

shows that, when the first layer is assigned randomly
and then frozen, accuracy is around 68%, 18% higher
than random prediction (as our target variable is bi-
nary and balanced). Even when the first layer does not
learn anything or contribute to the classification out-
comes, the rest of the model learns enough for modest
success.

When we train the first layer normally (in the ba-
sic model), it contributes around 15% to overall per-
formance. 2/3 of this contribution belongs to the filter
value choices and 1/3 belongs to the order of the se-
quence in our filters. That is the reason that when
we shuffle all 160 (32 filters x 5 units in each filter)
weights across all filters, only around 5% of overall
accuracy is lost.

Based on these experimental results, we learned
that the ordering of each filter is much less impor-
tant, compared to the crucial filter values found by
a model. In addition, we also learned that the rela-
tionship between neighboring filter values is not es-
pecially strong, since not much performance is lost if
the positions of each value are randomized throughout
the convolutional layer.

4.2 Clustering on Words and Filters

Clustering is an efficient way to understand patterns
within data. To investigate such patterns, we concate-
nated all of our word embeddings (23,363 x 100) and
our filters (160 x 100) to create k clusters. We tested
different k between 2 to 2000. The result of the clus-
tering can be seen in Table 3. No matter which size
k we choose, there is a single crowded cluster that
contains most of the words (e.g., when we produce
five clusters, 85 percent of words belong to one clus-
ter). The most crowded cluster contains all 160 filter
values. This means that in word embedding space,
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most of the words are concentrated in a small part of
space, and our model chose our filters to be in that
space as well. Figure 2 shows how tightly the filter
values are concentrated in the main cluster of words
(using PCA to represent 100-dimensional embedding
vectors in two dimensions).

-6 -4 2 [ 2 4 6 8

Figure 2: Words vs filters.

4.3 Performance of Models on Most
Important Words

After finding the importance rating of every single
word in our corpus according to Equation 1 , we cre-
ated six new models. All of them share the same ar-
chitecture as our basic model shown in Table 1, and
each of them is trained only on a subset of the corpus
of words. We choose the top n most important words
in our corpus and drop the rest. We train our brand
new models on these subsets of words from scratch
(weights randomly initiated). Even after dropping
95% of words and training a new model just on 5%
of the most important, the performance does not de-
crease significantly. The performance of these models
is presented in Table 4.
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Table 3: Clustering results.

Count of elements in Percent of elements in

K distances most populated cluster most populated cluster
1 - 23363 100.00
5 218924 19869 85.04
10 204173 14507 62.09
20 191238 11871 50.81
100 155071 8433 36.09
200 134379 7472 31.98
500 98158 5210 22.30
1000 63640 4936 21.13
2000 32948 2486 10.64
Table 4: New models trained on subset of words.

Words kept percentage Word counts Train accuracy Test accuracy

100.0 (Base Model) 23,363 93.24 83.19

80.0 18,691 92.71 83.16

50.0 11,682 93.43 83.14

10.0 2,337 92.83 83.67

5.0 1,169 92.34 82.53

1.0 234 87.02 78.16

0.5 117 84.75 74.62

All words from corpus.

A Top 0.05% words that maximize activation

Figure 4: Most important words.

Although the model does start to lose information,
and thus classification performance, once the corpus
is reduced to 1% of its original size or below, perfor-
mance remains strong when using only 5% of avail-
able words. Our final set of experiments focus on this
behavior. In figures 3 and 4, we used PCA to reduce
the dimensionality of the word embeddings from 100
to 2 in order to represent words in 2-D space, and
show how the most important words form a reason-
able coverage of the space. Figure 3 shows the im-
portant words as a fraction of all of the words, and
figure 4 shows which words were found to represent
the embedding space. The figures are separated for
clarity. To compare, we established three baseline
models: one which uses all words in our corpus, one
that also uses 5%, but selected randomly rather than
via Equation 1, and one that uses all except the most
important 5% of words. Results are shown in Table
5. Our selected words perform much better than ran-
domly choosing the 5% of words (a 20% increase in
test accuracy).

Table 5 and Figure 5 also show that restricting the
model to the most important words results in much
faster performance than the model using every avail-
able word in the corpus. Whether measured in epochs
or seconds, the restricted model is more than twice as
fast at learning. Unsurprisingly, speed is equivalent
between both models which use only 5% of the data,
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Table 5: Comparing new models to baseline models.

Average epoch

% words  Word Train Test . X Number of
Model name training time

used count accuracy accuracy parameters

(seconds)
Most important words 5% 1,169 93.67% 84.42% 36.3062 256,697
All words 100% 23,363  96.87% 85.33% 81.6395 2,476,097
Random words 5% 1,169 70.68% 64.29% 36.1543 256,697
All except important 95% 22,194  83.86% 74.52% 79.6917 2,359,197

=@=Most important words  =@=All words =d=Random words ==All exceptimportant

100%

90% T

®
3

=

Test accuracy

-
=
=

60% T+

20

10

25

30 40

Training time (seconds)

Figure 5: Comparing our model with three baseline models based on testing accuracy and training time - points in each line

represent 1/20th of an epoch.

but one that uses the important words performs much
better. If the best 5% of words identified via Equa-
tion 1 are eliminated, the model has the worst of both
worlds and is neither fast nor accurate. The model
architecture and hyper-parameters seems to have in-
significant effect on importance rate of words, but it
can be studied in more depth in future works.

S CONCLUSION AND FUTURE
WORKS

The field of machine learning has long focused on
how to improve the performance of our models, iden-
tify useful cost functions to optimize, and thereby
increase prediction accuracy. However, now that
human-level performance has been reached or ex-
ceeded in many domains using deep learning mod-
els, we must investigate other important aspects of
our models, such as explainability and interpretabil-
ity. We would like to be able to trust artificial intelli-
gence and rely on it even in critical situations. Fur-
thermore, beyond increasing our trust in a model’s
decision-making, a model’s interpretability helps us
to understand its reasoning, and it can help us to find
its weaknesses and strengths. We can learn from the
model’s strengths and inject them into new models,

202

and we can overcome their weak points by removing
their bias.

In this paper, we investigated the logic behind the
decisions of a 1-D CNN model by studying and ana-
lyzing its filter values and determining the relative im-
portance of the unique words within a corpus dictio-
nary. We were able to use the insights from this inves-
tigation to identify a small subset of important words,
improving the learning performance of the training
process by better than double. Future work includes
expanding these techniques to investigate structures
beyond the first layer of the convolutional network.
In addition, we are planning to deepen our study of
the ability of our model to identify important words.
By performing sensitivity analysis, alternately verify-
ing or denying the model’s access to words it deems
vital, we will hopefully be able to facilitate the trans-
fer of linguistic insights between human experts and
learning systems.
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