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Abstract 
 
The evolution of text generation has been revolutionized by the rise of transformer-based models. 
This has brought about significant changes in various fields, including news, social media, and 
scientific research. However, there is a need for a comprehensive review that covers the historical 
evolution, challenges, and potential solutions in this domain. To address this gap, we have 
conducted a thorough survey that provides a comprehensive overview of text generation. We also 
investigate text degeneration, providing insights and mitigation strategies. Our survey sheds light 
on the current landscape of neural text generation, identifies forthcoming challenges, and 
highlights research areas that require exploration within the academic community. 

Keywords: Natural Language Processing, Text Generation, Neural Text Degeneration, Large 
Language Models, Decoding Technique. 

 
 
1. INTRODUCTION 
The production process of any speech or writing is to know what to talk about and how to present 
that idea to the audience, so that the information is transferred effectively. Writers and speakers 
also optimize their speech or writing to avoid stating the obvious, which adds to the novelty of the 
discourse (Grice, 1975). 

The two significant factors of computer-based text generation are the content of speech or written 
text and how to transform the message into a natural language to make the most human-like text 
(McKeown, 1992). Text generation is a family of sub-tasks such as text summarization, dialogue 
response generation, and storytelling in the natural language processing realm. Such tasks 
intend to generate an output text conditioned on some input information (Xie, 2017), (McEnery, 
2023). Prior to neural networks, the main techniques for text generation were either based on 
template or rule-based systems or well-understood probabilistic models such as n-gram (Chen & 
Goodman, 1999) or log-linear models (Koehn & Knowles, 2017). 

Recent improvements in processing power and deep learning algorithms have made automatic 
text production conceivable (Kilgarrif, 2001). Deep learning models used in neural text generation 
are in one of three categories (Fatima, Imran, Kastrati, Daudpota, & Soomro, 2022): 1) Vector-to-
sequence models, which take a fixed-sized vector as an input and output is a sequence with 
varied sizes, image captioning is one example. 2) Sequence-to-vector, the model takes a 
variable-length text (such as a sentence or paragraph) as input and predicts a fixed-size vector, 
sentiment analysis is an example. 3)Sequence-to-sequence, these models take variable size 
input and generate variable size output, like text summarization. There are different deep learning 
architectural frameworks to implement deep learning models, such as Recurrent Neural 
Networks (RNN)(Rumelhart, Hinton, & Williams, 1986), Bidirectional RNN (Schuster & Paliwal, 
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1997), Long Short-Term Memory (LSTM)(Hochreiter & Schmidhuber, 1997), Generative 
Adversarial Networks (GAN)(Yu, Zhang, Wang, & Yu, 2017), and transformer based models 
(Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, & Polosukhin, 2017). 

There are three main approaches to evaluating the generated text by any model: human-centric, 
automatic metrics that require no training, and machine-learned metrics (Celikyilmaz, Clark, & 
Gao, 2020). The human-centric method is based on general and expert human evaluation of the 
context and grammar production which is expensive in both time and cost. Moreover, it is prone 
to human error. On the other hand, untrained automatic and machine-learned metrics are 
objective and cheap, but the quality of an evaluation depends heavily on the application. Metric 
for evaluation of translation with explicit ordering (METEOR) (Banerjee & Lavie, 2005), bilingual 
evaluation understudy (BLEU) (Papineni, Roukos, Ward, & Zhu, 2002), recall-oriented 
understudy for gisting evaluation (ROUGE) (Lin, 2004),and Word Perplexity (Brown, Della Pietra, 
Della Pietra, Lai, & Mercer, 1992) are examples of untrained automatic evaluation method. 
Human Unified with Statistical Evaluation (HUSE) is an example of a machine-learned evaluation 
metric (Hashimoto, Zhang, & Liang, 2019). 

The development of neural text generation models has brought about an increase in awareness 
of their drawbacks and risks. The main flaws with these models are degeneration (Holtzman, 
Buys, Du, Forbes, & Choi, 2019); hallucination, a condition in which the model does not know the 
answer but still provides a wrong or nonsensical answer (Maynez, Narayan, Bohnet, & 
McDonald, 2020); bias, different degrees of preferences or tendencies concerning various groups 
(e.g., male vs. female) (Sheng, Chang, Natarajan, & Peng, 2019); toxicity, rude, disrespectful or 
unreasonable text; and miscalibration, plausible-sounding but incorrect information (Guo, Pleiss, 
Sun, & Weinberger, 2017). In this survey we introduce a comprehensive background on text 
generation from early works to early neural text generation models in section 2, and in section 3 
we coverthe most recent neural text generation models.  This is followed by an overview of the 
degeneration problem and solutions to alleviate it in section 4. Section 5 concludes the survey. 

2. BACKGROUND 
The earliest works used stored text and templates to communicate with the user. The system 
designer needed to know all the questions a user might ask the system and manually provide the 
answers to those questions. Such methods required considerable time and labor and could only 
handle common and foreseeable questions. 

Later research focused on the tactical component, a grammar, used by a system to communicate 
its intent and determine the phrasing of the answer. The majority of tactical components were 
intended to generate English sentences from a form of semantic nets (Simmons & Slocum, 
1972), write general purpose rules and heuristics using an explicit linguistic structure as the 
representation of the speaker’s goals(McDonald, 1980), and develop a system based on the 
conceptual dependency system for meaning representation to understand the natural language 
and generate paraphrase and inference system (Riesbeck, Schank, Goldman, & Rieger III, 
1975). Most of these works focused on the generation of single sentences; thus, the link of 
sentences to previous text was not considered. Thus, strategic components were developed to 
provide solutions to such problems. The works were to provide the knowledge needed to 
generate texts related to the context (Swartout, 1981), addressing the problem of determining the 
speech act to specify the agents involved and the propositional content of the act(Cohen, 1979), 
and enhancing the order of information in a given knowledge base.(Mann & Moore, 1981) 
Research systems designed with context were still limited by their linguistic bases’ weakness. 
Their techniques often cannot be transferred to new knowledge domains. (Mann, 1983). 

There is an important part of text generation which was often left out of consideration in early 
research, choosing lexical items and syntactic structures to best present the different facts. A 
theory of language generation based on planning makes it possible for one to account for noun 
phrases, which were proposed to address this problem (Appelt, 1985). One approach to 
designing a system that is able to adapt its behavior to different kinds of users with whom it 
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interacts, incorporates the user’s domain knowledge into natural language generation (Paris, 
2015). 

Statistical language models (LM) are used in many natural language applications as a crucial 
component for improving a system's performance (Rosenfeld, 2000). A statistical language model 
represents a probability distribution over different granularity of text, such as words, sentences, 
and a whole document. N-grams were the conventional language modeling approach for its 
simplicity and good performance, although it has a problem of data spareness which can be 
addressed to some degrees with smoothing techniques (Chen & Goodman, 1999). However, the 
n-grams paradigm takes no advantage of the fact that modeling language means modeling deep 
structure, intention, and thought behind the words, not just modeling a sequence of arbitrary 
linguistic units. 

The new millennium brought a powerful combination of ample online textual data, more 
inexpensive computing power, and a unique idea for building statistical phrase-based machine 
translation systems. (Koehn, Och, & Marcu, 2003) factorized the translation probabilities of 
matching phrases in the source and target sentences, which found its way to other text 
generation applications (Bannard & Callison-Burch, 2005) (Fader, Zettlemoyer, & Etzioni, 2013). 
These rule-based and statistical models have the strength of interpretability and predictability but 
lack flexibility and expressivity. Despite their inadequacy, there are still many tasks where these 
models are the only reasonable option. 

Neural networks and their variations have demonstrated promising performance in various 
applications over the past ten years. A neural probabilistic LM was first proposed to exploit the 
advantages of neural networks for text generation tasks in (Bengio, Ducharme, & Vincent, 2000). 
This model, a feedforward neural network with a linear projection layer and a non-linear hidden 
layer, can be seen as an extension of the n-gram paradigm that takes advantage of a neural 
networks’ ability to generalize, and they represent sequences of varying lengths into low-
dimensional space. 

The SENNA system was developed to add a convolutional architecture to the neural LM that 
shares representations across language modeling tasks, although it does incorporate a language 
model it is not a text generation system (Collobert & Weston, 2008). The neural net language 
model was also improved by adding recurrence to the hidden layers, which allowed it to beat 
smoothed n-gram models in perplexity (Mikolov, Deoras, Kombrink, Burget, & Cernocky, 2011).  

Adopting improved variants of RNN, such as long short-term memory (LSTM), to generate 
complex sequences with long-range structure by predicting one data point at a time (Graves, 
2013), and gated recurrent networks (GRU) (Chung, Gulcehre, Cho, & Bengio, 2014) to capture 
long-term dependencies in the text, had acceptable results. However, due to exposure bias, at 
training time each prediction is conditioned on the previously observed words from the ground 
truth and at the testing time the model will be fed with its own predictions, leading to quickly 
accumulating errors during inference. The result is not satisfactory (Bengio, Vinyals, Jaitly, & 
Shazeer, 2015a). Later neural text generation models were developed with reinforcement 
learning (RL) (Ranzato, Chopra, Auli, & Zaremba, 2015), generative adversarial nets (GANs) 
frameworks, and and end-to-end reparameterization techniques (Kusner & Hern´andez-Lobato, 
2016). 

In this paper, we thoroughly investigate the most recent models in neural text generation, their 
obstacles, and different solutions to overcome those challenges. In particular we talk about the 
problem of neural text degeneration and different types of strategies to address this issue. 
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FIGURE 1: Encoder-Decoder architecture. The model reads the input sequence X = (x1, x2,...,xt) and 

produces output sequence Y = (y1,y2,...,yt). The model stops prediction after reaching an end of sentence 
(EOS) symbol. 

 
3. NEURAL TEXT GENERATION 
The abundance of large textual corpora and high-performance machines resulted in a shift 
toward learning representations of this large data of typically human-written texts using deep 
neural network models. Regarding deep learning, particularly, representation learning is the 
outcome of the function that a model learns, where the learning is recorded in the model’s 
parameters as the function transforms input to output during training. 

Traditional deep neural networks typically take the input textual data and encode it into a fixed-
length vector using techniques such as Bag Of Words (BOW) or word2vec, none of which 
preserve the order of words. In most natural language processing tasks, the order of words has 
essential information to extract; thus, to solve this problem, RNNs were introduced. 

The RNNs were the first to start and continued with LSTM, and GRUs for learning language 
representations and later sequence to sequence learning (Sutskever, Vinyals, & Le, 2014), which 
is the precursor to the encoder-decoder architecture (FIGURE 1). Encoder-decoder architecture 
consists of two RNNs; one encodes a sequence of symbols into an encoder/context vector, a 
fixed length vector representation, and the other decodes the input representation into another 
sequence of symbols one element at a time (Cho, Merrienboer, Gulcehre, Bougares, Schwenk, & 
Bengio, 2014). During the training phase, the context vector is fed to the decoder in addition to 
the true output from the previous time step to produce the predicted output at the current time 
step. The loss function, cross-entropy loss, is calculated on the predicted output from each time 
step and the errors are backpropagated to update model parameters. ELMo (Embeddings from 
Language Models), a pre-trained language model, exemplifies the usage of a bi-directional LSTM 
architecture to capture contextual information in word representations (Peters, Neumann, Iyyer, 
Gardner, Clark, Lee, & Zettlemoyer, 2018). 

                              (1) 
 

The encoder-decoder model’s first application was machine translation, but shortly showed 
improvement in the performance of other text generation applications. The shortcoming of 
encoder-decoder architecture to capture dependencies in long sequences inspired the 
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introduction of attention (Bahdanau, Cho, & Bengio, 2015) and pointer networks (Vinyals, 
Fortunato, & Jaitly, 2015). 

The Transformer architecture employs both an encoder and a decoder, both of which utilize the 
self-attention mechanism, also known as intra-attention. This mechanism leverages attention to 
establish connections between different positions within a single sequence, facilitating the 
learning of relationships between sequence elements. This approach offers two notable 
advantages: firstly, it’s highly efficient as it enables parallel processing of words, and it doesn’t 
require recurrent steps for understanding word positions, thanks to the injection of positional 
encoding into each embedding. Secondly, it enhances contextual understanding by 
simultaneously capturing context from both directions. During training, Transformers aim to 
maximize the log-likelihood of the training data by optimizing the model through sequence cross-
entropy loss. 

The standard Transformer model has a fixed context window, limiting its ability to capture long-
range dependencies in sequences. Transformer-XL is an extension of the original Transformer 
model to address this limitation by introducing a positional encoding scheme and segment-level 
recurrence, allowing it to extend the context window and capture information beyond the fixed 
size. These innovations improve the model’s performance in tasks requiring a broader 
understanding of global context or handling lengthy documents (Dai, Yang, Yang, Carbonell, Le, 
& Salakhutdinov, 2019). 

Bidirectional Encoder Representation from Transformers (BERT) is trained using a masked 
language modeling objective, which is different from the conventional language modeling 
objective that predicts the next word in a sequence based on its history. Instead, masked 
language modeling predicts a word by considering its context from both the left and right sides. 
This unique characteristic of BERT makes it less straightforward to use as a traditional language 
model to evaluate the probability of a text sequence or for sampling purposes. (Kenton & 
Toutanova, 2019). Researchers show that BERT can be viewed as a Markov random field 
language model. By adopting this formulation, they develop a straightforward algorithm for 
generating content from BERT using Gibbs sampling, without the need for extra parameters or 
additional training (Wang & Cho, 2019). 

XLNet is a generalized autoregressive pre-training method that takes advantage of the greatest 
aspects of two successful pre-training methods, autoencoding (e.g., BERT), and autoregressive 
language modeling, while avoiding their drawbacks (Yang, Dai, Yang, Carbonell, Salakhutdinov, 
& Le, 2019). XLNet outperforms BERT on twenty tasks by a large margin. 

Bidirectional and Auto-Regressive Transformers (BART) is a versatile denoising autoencoder, 
implemented using a sequence-to-sequence model, which can be effectively utilized for a diverse 
set of end tasks. BART’s training process involves two main steps: (1) introducing noise to the 
text using a flexible noising function, and (2) training the model to reconstruct the original text 
from the noisy input (Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, & 
Zettlemoyer, 2020). mBART (multilingual BART) is an extension of the BART model that is 
specifically designed for multilingual text generation tasks. (Liu, Gu, Goyal, Li, Edunov, 
Ghazvininejad, Lewis, & Zettlemoyer, 2020). By leveraging its pre-trained knowledge of a wide 
range of languages, mBART can perform well even in low-resource language settings, where 
there might be limited training data available for certain languages. 

A stack of models, a variant of the transformer decoder, is the base for a Generative Pre-Training 
(GPT) to generate remarkably fluent sentences, and even paragraphs, for a given topic or a 
prompt (Radford, Narasimhan, Salimans, Sutskever, et al., 2018). GPT-2 is a direct scale-up of 
GPT with 48-layer transformers. To develop contextual text representations, GPT-2 is pre-trained 
on substantially larger quantities of text corpora by predicting words based on context (Radford, 
Wu, Child, Luan, Amodei, & Sutskever, 2019). And the OpenAI GPT-3 model with 175 billion 
parameters, 10x more than any previous non-sparse language model, is now competitive across 
many tasks with custom-made models while requiring little to no dataset-specific training data 
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(Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, et al., 
2020). 

ChatGPT is a language model with the ability to dialogue based on GPT-3.5, a GPT3 variation 
that underwent training using both text and code and is capable of following the user’s 
instructions operating via reinforcement learning (Ouyang, Wu, Jiang, Almeida, Wainwright, 
Mishkin, Zhang, Agarwal, Slama, Ray, et al., 2022). ChatGPT can be seen as the most human-
like bot so far. Still, like GPT, it has limitations such as text degeneration and hallucination. 

Several other sizable language models have been developed, including the Pathways Language 
Model (PaLM) (Chowdhery, Narang, Devlin, Bosma, Mishra, Roberts, Barham, Chung, Sutton, 
Gehrmann, et al., 2022), the Large Language Model for AI Meta (LLaMA) (Touvron, Lavril, 
Izacard, Martinet, Lachaux, Lacroix, Rozi`ere, Goyal, Hambro, Azhar, et al., 2023a), and the 
Language Models for Dialogue Applications (LaMDA) (Thoppilan, De Freitas, Hall, Shazeer, 
Kulshreshtha, Cheng, Jin, Bos, Baker, Du, et al., 2022). These models exhibit varying parameter 
counts, spanning from 40 billion parameters for PaLM1 and LLaMA-1 to 70 billion parameters for 
LLaMA-2 (Touvron, Martin, Stone, Albert, Almahairi, Babaei, Bashlykov, Batra, Bhargava, 
Bhosale, et al., 2023b), with an impressive 540 billion parameters for PaLM-1. While these 
models demonstrate proficiency in neural text generation and excel in specific tasks, such as 
LaMDA’s focus on dialogues, they still grapple with the challenge of text degeneration. 

The increase in the number of parameters alone does not completely address the problem of text 
degeneration in large language models. Despite the considerable capacity of these models, they 
can still produce repetitive and overly safe responses, lacking the desired level of creativity and 
diversity. 

4. NEURAL TEXT DEGENERATION 
Modern sequence-to-sequence models such as transformers show mastery in attaining low 
perplexity on various NLP tasks. However, they operate far from flawlessly when employed as 
text generators. Neural text degeneration is the condition of producing output text that is bland, 
incoherent, or gets stuck in repetitive loops (FIGURE 2). There are many explanations and 
solutions for this problem; we cover the most important ones in this part. 

 

 
 

FIGURE 2: Despite having a substantial amount of human context and employing the robust GPT-2 Large 
language model, using Beam Search with a size of 32 results in undesirable repetitive content (indicated in 
blue). Conversely, opting for another decoding approach, pure sampling produces incoherent nonsensical 

output (highlighted in red) (Holtzman et al., 2019). 

4.1 Possible Reasons for Degenerate Text 
Numerous explanations for why the neural text is degenerate have been proposed, yet the true 
cause is still unknown. One possibility is that the language model in a transformer architecture 
tends to choose repeated words. A feature of human likelihood maximization (LM) is that the use 
of obvious statements is minimized, since humans try to omit the words they know their audience 
should already know from context (Holtzman et al., 2019). Another possible reason is when the 
model is trained on fixed textual corpora with limited words, it cannot be expected to know the 
whole language with many different words it never encountered in training (Choi, 2018). The next 
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possible reason is related to exposure bias, during training language models see diverse ground-
truth target sequences, but during inference they rely on their own generated output, leading to 
potential biases and repetition (Bengio, Vinyals, Jaitly, & Shazeer, 2015b). Some research also 
takes the use of the likelihood objectives as the main factor for text degeneration (Welleck, 
Kulikov, Roller, Dinan, Cho, & Weston, 2019a). 

4.2 Solutions to Alleviate Degenerate Text 
The solutions in this part are divided into two categories. The first category blames the decoding 
techniques for this problem, and the second category goes to the training part of the model and 
replaces it with a new mechanism to address the issue. In this section, we first go through all the 
approaches in the decoding mechanism, and then we elaborate on the change in the training 
process. 

4.2.1 Different Decoding Strategies 
The decoding block in the Encoder-Decoder architecture takes the input sequence X 

representation and tries to generate the target �̂  that maximizes the similarity between the 

intended output and predicted sequence. The �̂ is a vector with probabilities for each generated 
word. The model selects the next word according to the generated probabilities. 

Greedy Search is to choose the data with the highest index for the output distribution at each 
time step, then feed this as the input for next time step. This approach works surprisingly well in 
some applications, plus it is easy to understand and fast to compute. 

�̂= model.predict (input)                                                (2) 
 

�̂= argmax (�̂)                                                       (3) 
 

Beam search enhances greedy search in two ways. Unlike greedy search, which only considers 
the best word at each step, beam search widens its search to evaluate the best k words 1. 
Additionally, it takes into consideration the words that precede and follow the current time step. In 
beam search, the selection of the k best sequences (referred to as the beam size or beam width) 
factors in the probability of combining all the words that have come before the current word. 
Smaller beam sizes tend to yield better results compared to larger ones. It’s important to note 
that beam search may degrade in performance when dealing with larger search spaces and 
primarily benefits translation quality when used with narrower beams (Koehn & Knowles, 2017). 

There are variants of beam search to address the length bias and performance deterioration with 
larger beam width in neural machine translation (Bahdanau et al., 2015; Wu, Schuster, Chen, Le, 
Norouzi, Macherey, Krikun, Cao, Gao, Macherey, et al., 2016; He, He, Wu, & Wang, 2016). 

Algorithm 1 Pseudo-code for beam search algorithm with beam size k 
 

Require:  
1: for t = 1, . . ., steps do 
2: for each H ∈ H do 
3: for each u ∈ V do 
4: p = Pr(u | X,H) 

5: add   
6: compute and memorize the score, s(Hnew) = s(H) + logp 
7: end for 
8: end for 
9:              if H reached < eos >, add H to Hfinal 
10:            keep the k best H in H according to the score 
11: end for 
12: return H = argmaxH∈Hfinal s(H) 
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Decoding methods that prioritize maximization, such as the greedy approach and beam search, 
consistently result in highly repetitive text, regardless of the model employed. Ideally, a proficient 
model should assign higher probabilities to words resembling human language. However, as 
illustrated in FIGURE 3, human-selected words exhibit variable probabilities and aren't 
consistently chosen based solely on the highest probability, in contrast to these decoding 
techniques. 

 
 

FIGURE 3: Probability of words chosen by beam search and humans,  
given the same context (Holtzman et al., 2019). 

 
Random sampling is a straightforward approach to choosing words stochastically, to prevent 
repetition caused by the model’s safe play to keep generating the same word for most of the 
context. However, as one might expect, this approach is too random and lacks coherence. 

Temperature sampling, an upgrade to random sampling, uses a sharper version of a probability 
distribution, increasing the probability of the most likely words and decreasing the probability of 
the least probable words by lowering the temperature τ (as shown in Equation 4). (Ackley, Hinton, 
& Sejnowski, 1985) Instead of using a simple softmax we can use temperature-induced softmax 
to produce probabilities of each logit ��at inference time (Equation 5). 

  (4) 
 

  (5) 
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Top-k sampling is another approach to decrease the chance of the least probable words, which 
only takes the sample from the top k probable tokens. The produced word is more human than 
other methods so far, which has helped this to become a popular sampling procedure (Fan, 
Lewis, & Dauphin, 2018). The number of k top tokens is chosen at the beginning of the inference 
process and is fixed regardless of the changes in the following word probability distribution; this 
may cause choosing improbable words. 

Top-p sampling aims to find the smallest possible sets of words whose sum of probability is equal 
to or bigger than the value p (Equation 6). The probability distribution is re-scaled such that the 
probability of the words that are not in top tokens, V 

(p)
, is set to 0 and the rest sum to 1 (Equation 

7).  In this manner, the number of words in the set might fluctuate according to the probability 
distribution of the next word (Holtzman et al., 2019). 

 

(6)

 

(7). 
 

Mirostat is a sampling algorithm that uses Zipf’s law to dynamically adjust k (of topk) to control 
per-sequence perplexity. The idea is similar to top-p sampling: both try to truncate the unreliable 
tail in the probability distribution. Mirostat observes the cross entropy of generated text for every 
word and uses it as feedback throughout the generating process, controlling the overall cross 
entropy (Basu, Ramachandran, Keskar, & Varshney, 2021). 

Typical sampling is based on the idea that human samples are from words with high information 
content and low probability (Meister, Pimentel, Wiher, & Cotterell, 2022). It means we tend to not 
use the words we expect the audience to know or expect to see/hear. The idea of typical 
sampling is to choose the words that minimize the difference between the expected information 
content (Shannon, 1948) (conditional entropy given context) and true information content 
(Equation 8). 

           (8) 
 
The set of words V 

(τ) 
⊆V are the words with sum mass probability constrained by a threshold τ 

(Equation 9). 

  (9) 
 
For applications such as neural machine translation, which has a peaked probability distribution 
and a few words have the majority of probability mass, the conditional entropy is low, and hence 
the typical sampling is not a good decoding mechanism. However, in applications such as 
storytelling or paraphrasing with more spread-out distribution, this method has the potential to 
choose a more human-like next word. 
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Contrastive decoding is a search objective inspired by the fact that many failures of language 
models such as repetitive, bland, and irrelevant tokens are more prevalent in smaller LMs than in 
larger LMs. (Li, Holtzman, Fried, Liang, Eisner, Hashimoto, Zettlemoyer, & Lewis, 2022) 
Contrastive decoding returns the difference between the probability distribution from a larger off-
the-shelf model (which authors call it expert) and a smaller model (which authors call it amateur). 
For a prompt sequence of x1,…,n as an input the decoder aims to generate the continuations xn+1, … 

,n+m such that it maximizes LCD =  

 
The score (Equation 10) is a token-level objective limited to v ∈Vhead(x<i) which is the set of 
plausible tokens whose probabilities are more than α (hyperparameter in [0,1.0]) times the 
maximum probability (Equation 11). 

 

(10) 

 (11) 
 

Contrastive search is similar to contrastive decoding but only requires one language model. The 
idea is to generate the next token from the set of most probable candidates V 

(k) 
and the 

generated token should be sufficiently discriminatory in light of the previous context (Equation 
12). (Su, Lan, Wang, Yogatama, Kong, & Collier, 2022) 

 

    (12) 
 
v ∈V 

(k) 
is a token from the set of top-k predictions from the model’s probability distribution with 

respect to the previous context. Degenerate penalty is the cosine similarity s (.,.) between 
representations of candidate word hv and all tokens in the context hx<i. 

4.2.2 Unlikelihood Training 
The standard likelihood objective assigns excessive probabilities to sequences containing 
repeated and frequent words. Unlikelihood training proposes an objective that penalizes the 
tokens that contribute to this pattern (Welleck et al., 2019a). 

Unlikelihood training simply tries to decrease the mode’s probability of negative candidates, 
previous context tokens C

t
, by defining the unlikelihood loss (Equation 13) in such a way that the 

loss decreases as the probability of such candidates decreases. There is often some correct 
repetition in the ground-truth text. therefore, to avoid penalizing a true repetition, the ground-truth 
next-token is not a candidate: C

t 
= {y1, y2 ..., yt−1} \ {yt}. Choosing previously generated tokens as 

candidates is not only simple but also fast since the tokens are already present in the training 
sequence. 

  (13) 
 
The token-level unlikelihood loss objective is maximum likelihood training augmented with 
unlikelihood loss (Equation 14). 



Elham Madjidi & Christopher Crick 

International Journal of Computational Linguistics (IJCL), Volume (14) : Issue (2) : 2023 29 
ISSN: 2180-1266, https://www.cscjournals.org/journals/IJCL/description.php 

            (14) 
 

The concept of unlikelihood training implies that when the model receives input tokens that might 
lead to repeated content from the prior context, it effectively minimizes the chances of incorrect 
repetitions. This process doesn’t disrupt the occurrence of natural repeats in the language. 
Additionally, it causes words that were previously more common to become less frequent as the 
model diminishes the probability of tokens it has encountered in the context of previous tokens. 

 

 
 

FIGURE 4: Example: Token-level unlikelihood training reduces the repeated tokens’ probability. 

 
The token-level unlikelihood training is limited to the training dataset; however, the issue of too 
frequent words can also happen with generated sequences. Thus, the sequence level 
unlikelihood training consists of decoding a sequence from the model, and then computing the 
unlikelihood loss using the decoded sequence instead of the ground truth (Equation 15). 

  (15) 
 
A token is penalized if it is in any part of a repeating n-gram (Equation 16) or a random token in 
the decoded sequence. 

  (16) 
 

The lossUL−token uses the same amount of supervision as losslikelihood. The previous context 
candidates are already present in the training sequence; therefore, the model gets better results 
without much cost. Experiments show that lossUL−seq improves when measured with lossUL−token 

compared with losslikelihood, with a slight increase in training time. 

Unlikelihood training has been applied in generative dialogue models, where it lowers the 
probability of inconsistent dialogue. (Li, Roller, Kulikov, Welleck, Boureau, Cho, & Weston, 2020) 
This makes the model produce more human-like dialogue with fewer repetitive words, use more 
rare words from the vocabulary, and copy the context as a target. Furthermore, if the model is 
applied to a labeled dataset of coherent and incoherent utterances, it improves contradiction, 
logically or factually inaccurate or contradicting statements (Zhang, Dinan, Urbanek, Szlam, 
Kiela, & Weston, 2018; Welleck, Weston, Szlam, & Cho, 2019b). 

4.2.3 Contrastive Training 
Contrastive training is based on the idea that model degeneration is caused by the anisotropic 
distribution of token representation. The cosine similarity between the representation vectors for 
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different tokens in a sentence is very high, up to 0.95. The goal of the approach is to encourage 
the model to learn discriminative isotropic token representation. A contractive loss lossCL is 
introduced to the training of the model (Equation 17). (Su et al., 2022) to push away 
representations of different tokens. 
 

  (17) 
 
SimCTG (a simple contrastive framework for neural text generation) uses contrastive training in 
order to train the language model and give it an isotropic and discriminative representation 
space. SimCTC is companied with contrastive search to encourage diversity. SimCTG 
incorporates an additional term in the training formulation (Equation 18) and a modified inference 
time strategy during decoding. The combination induces diversity (reducing degeneration) in the 
generated text while maintaining relevance to the input. 

When a pre-defined margin ρ ∈ [−1,1] is 0, lossSimCTG degenerates to losslikelihood. (Su et al., 2022). 
 

  (18) 
 

Approach Algorithm Mechanism 

Decoding(determinist
ic) 

Greedy Generates the most probable word given the context at each 
time step. 

Beam 
search 

At each level keeps k the most probable words and continue 
the breadth-first search until the end of the sequence. 

Contrastive 
decoding 

Creates a set of the most probable tokens from the expert 
model given context. 
Then calculate the probability of those with the amateur model. 
At last, chooses the tokens with the maximized difference 
between expert log-prob and amateur log-prob 

Contrastive 
search 

Create a set of most probable token from LM. 
Then measures the probability of these tokens and reduces it 
by the cosine similarity of a previously generated token. 

Decoding(stochastic) 

Random 
sampling 

Randomly chooses a token or tokens from the model’s 
generated distribution. 

Temperatur
e 

Randomly chooses a token from the shaped model’s generated 
distribution with a temperate τ 

Top-k Randomly chooses a token from a truncated model. Always 
samples from k most probable words. 

Top-p Samples from the accumulative probability mass of 0<=p<=1. 

Mirostat Similar to top-k sampling but the k is dynamically adjusted using 
Zipf’s law 

Typical Samples from a subset of words whose log probability is in the τ 
range of expected information content of the model. 

Training Unlikelihoo
d 

Adds losslikelihood to training process to penalize the model for 
generating undesirable tokens. 

Contrastive Adds lossCL to the training process which calculates the cosine 
similarity between different token representations to maximize 
this distance. 

 

TABLE 1: Overview of text generation approaches to alleviate degenerate text. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 
Neural text generation is central to many NLP applications such as storytelling, summarization 
and translation. In recent years, research in neural text generation has resulted in remarkable 
architectures such as transformer-based models. Despite the reported low perplexity of such 
models, they suffer from degeneration when used in certain applications of NLP. In this survey, 
we provide an overview of text generation and the accompanying problem of degeneration. We 
thoroughly investigate the solutions to alleviate the problem of degeneration. This literature 
review aims to help researchers, students and academicians to understand the problem and see 
the possible solutions. 

Future work can establish the reasons for the state-the-art model giving the most probability on 
words that are not human choices in text generation, despite the fact that these models were 
trained on huge amount of human-written text. One other good area for future research is the 
perplexity and informativeness trade-off for a generated text and why low perplexity is not always 
the best choice. 
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