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Abstract—Unsupervised domain adaptation (UDA) aims to
transfer knowledge from a labeled source domain to an un-
labeled target domain. Recent works have focused on source-
free UDA, where only target data is available. This is challeng-
ing as models rely on noisy pseudo-labels and struggle with
distribution shifts. We propose Active Adversarial Alignment
(A3), a novel framework combining self-supervised learning,
adversarial training, and active learning for robust source-
free UDA. A3 actively samples informative and diverse data
using an acquisition function for training. It adapts models
via adversarial losses and consistency regularization, aligning
distributions without source data access. A3 advances source-
free UDA through its synergistic integration of active and
adversarial learning for effective domain alignment and noise
reduction. Our approach significantly advances state-of-the-art
methods, achieving 4.1% on Office-31, 11.7% on Office-Home,
and 10.6% on DomainNet accuracy improvements. Source code:
https://github.com/chrisantuseze/active-self-pretraining

Index Terms—domain adaptation, self-supervised learning,
adversarial learning, source-free adaptation.

I. INTRODUCTION

Unsupervised domain adaptation (UDA) addresses the poor
model performance that arises due to domain shift [2] by
leveraging labeled data from a source domain to train models
that generalize to an unlabeled target domain. However, stan-
dard UDA techniques require access to source data, which
might not be feasible due to privacy or computational re-
source concerns. This paper tackles the challenging problem of
source-free unsupervised domain adaptation (SFUDA), where
only target data is available without its label. Recent SFUDA
methods [3]–[6], assume access to a pre-trained source model.

Various approaches have been proposed to address do-
main shifts in source-to-target domain adaptation. In a semi-
supervised setting, works like [7]–[10] address the problem
using model regularization techniques and self-training with
pseudo-labels. Another line of work focuses on aligning source
and target feature distributions, with notable works including
[11]–[13]. These approaches design adversarial domain dis-
criminators in parallel with the classification head.

The idea of designing pseudo-labels for training the target
model has been prevalent in recent literature. SHOT [3] refines
pseudo-labels with a prototype classifier and fine-tunes the
feature extractor with a model regularization term maximizing
mutual information. The work done in [10] introduces an
augmented self-labeling scheme to improve pseudo-labels and
retrain the target model.

Despite the benefits of self-labeling schemes, they face
challenges such as noisy pseudo-labels since they rely on
predictions made by a model trained on the source domain to
label target domain samples. In addition, due to the problem
of prior initialization [10], [14], there might be limited data
used to initialize the target for pseudo-labeling. To address
these issues, we propose Source-Free Unsupervised Domain
Adaptation with Active Sampling and Adversarial Domain
Alignment (A3), a novel approach for source-free unsuper-
vised domain adaptation as shown in Fig. 1. A key contribution
of A3 is an active learning strategy that uses an acquisition
function to carefully select the most informative and diverse
target samples to build a core-set for training the target model.
Using an acquisition function based solely on uncertainty or
diversity sampling tends to be less effective for active domain
adaptation [11], [15]. Therefore, we adopted a hybrid acquisi-
tion strategy that combines uncertainty and diversity sampling
to identify both informative and representative samples from
dense regions of the feature space.

Furthermore, we adapt the source model to the target
domain using adversarial and consistency losses that encour-
age learning domain-invariant features without source data.
Specifically, we employ a domain adversarial loss which trains
a domain classifier to distinguish between target embeddings
generated from the source and target models. By using a gradi-
ent reversal layer, we ultimately confuse this classifier thereby
reducing domain divergence. Additionally, we incorporate a
virtual adversarial loss [16] which locally perturbs embeddings
to maximize prediction change and enforce local Lipschitz
smoothness. The virtual adversarial loss acts as a regulariza-
tion technique to prevent overfitting and encourage robustness.
Together, the domain adversarial and virtual adversarial losses
perform global and local distribution alignment to facilitate
effective adaptation. Further, we utilize a swap prediction
loss for self-supervision and an entropy minimization term to
prevent target overfitting. We summarize our contributions as
follows:

1) We propose a new framework for domain alignment by
jointly training the target model and a domain classifier
to enable the target model to produce domain-invariant
features compelled by adversarial and regularization
losses.

2) To address the problem of noisy pseudo-labels in su-



Fig. 1: Our framework involves two main phases: the source model pretraining and the model adaptation. We begin by adopting
a training regime for the source model, which is initialized with a pre-trained ImageNet model [1]. This is referred to as stage-
0 in the multi-stage adaptation process. The second phase encompasses n-1 stages of active learning. During this phase, a
core-set is constructed and the Bayesian model uncertainty is estimated. At each iteration, the core-set is updated with the
top-k informative samples from the training pool. These samples are then used to retrain the Bayesian and target models until
the data sampling budget is exhausted. Refer to Section III for further details on target domain alignment. Za and Zb denote
the two augmentations of the input used for self-supervised training of the source and target models.

pervised and semi-supervised domain adaptation, we
introduce A3, an active self-supervised adversarial train-
ing strategy to achieve source-free and target-label-free
domain alignment.

3) To the best of our knowledge, this is the first compre-
hensive work that combines self-supervised learning, ad-
versarial training, and active learning to achieve source-
free unsupervised domain adaptation. We also performed
extensive evaluations on benchmark datasets achieving
impressive state-of-the-art performance.

II. RELATED WORK

Settles’ comprehensive survey [17] delves into active learn-
ing, exploring acquisition functions such as information the-
oretical approaches [18] and uncertainty-based methods [19].
The CLUE framework [15] introduces uncertainty-weighted
clustering for diverse instance selection under domain shifts.
The synergy of BALD [14] with deep neural networks, ampli-
fies acquisition performance. Batch sampling strategies, such
as those involving BALD [20] and core-set approximations
[21], address efficiency concerns posed by computational
challenges.

Additionally, Active Domain Adaptation (ADA) optimizes
domain adaptation by strategically selecting samples. [22]
introduced ADA, later adapted to image classification as
AADA [11]. TQS [23] and CLUE [15] emphasize uncertainty-
based sample selection, while S3VAADA [24] incorporates

vulnerability, diversity, and representativeness. Inspired by
BALD and CLUE, we adopted a hybrid acquisition function
that jointly captures both uncertainty and diversity of the
samples.

The Gradual Source Domain Expansion (GSDE) approach
[25] presents a method for mitigating early alignment errors
in Unsupervised Domain Adaptation (UDA) by progressively
integrating pseudo-source data from high-scoring target sam-
ples. This method emphasizes the incremental alignment of
source and target domains over multiple training iterations.
In contrast to this gradual expansion method, our approach
utilizes active learning to sample the most diverse and repre-
sentative instances upfront, alongside adversarial learning and
model regularization, to better ensure domain invariance from
the outset.

In another related work, Local Context-Aware Active Do-
main Adaptation (LADA) [26], the authors proposed an active
selection criterion based on local inconsistency in model
predictions, focusing on uncertain regions. LADA uses a
Progressive Anchor-set Augmentation (PAA) module to handle
the small size of queried data, supplementing labeled target
data with pseudo-labeled confident neighbors. Our method
differs by emphasizing not just uncertainty but also diversity in
sample selection, and by incorporating adversarial learning to
improve domain adaptation, coupled with model regularization
to avoid overfitting.

Over time, there has been growing interest in aligning



Fig. 2: T-SNE plot of the learned source features and the target features at each active learning adaptation cycle.

domains through adversarial training. Various approaches have
been proposed: [27] introduced an adversarial loss alongside a
classification loss for learning domain-invariant features. Sim-
ilarly, [28] used an adversarial loss to train a target model to
deceive a discriminator in stages. Adversarial training, as noted
by [29], helps prevent overfitting of the target classifier to
unlabeled target data by maximizing classifier uncertainty. Our
work leverages a domain adversary to discriminate between
embeddings from two domains, ensuring the target model
learns to produce invariant features.

III. PROPOSED METHOD

In this section, we introduce our novel approach, specifically
designed for source-free unsupervised domain adaptation. Our
primary objectives include reducing annotation costs through
the utilization of self-supervised learning and active learning
for iterative model adaptation. To address these goals, we
introduce and integrate various domain adaptation techniques,
including a swap prediction loss, along with the introduced
domain adversarial loss, virtual adversarial loss, and entropy
minimization loss. In addition, inspired by BALD [14] and
CLUE [15], we adopted a hybrid acquisition function that
jointly captures both uncertainty and diversity of the samples.

In the first part of this section, we present the self-supervised
learning technique we adopted for pretraining the source
model. In the second part, we discuss our acquisition strategy,
which involves iteratively sampling low-entropy and diverse
instances from the target pool to train the target model. Finally,
in the third part, we introduce adversarial losses and model
regularization techniques, providing a detailed overview of
our methodology. This structured presentation ensures a clear
understanding of the proposed A3 method and its components.

The combined benefit of this iterative process, adversarial
losses, and model regularization enhances the model’s per-
formance in adapting to the target domain, ensuring that the
target model learns to produce invariant features. The T-SNE
[30] plot for these features can be visualized Fig. 2.

A. Self-Supervised Pretraining

We adopt a self-supervised learning scheme inspired by
SwAV [31], aiming to maximize the similarity between posi-
tive pairs and minimize the similarity between negative pairs.
This involves contrasting multiple image views by comparing
their cluster assignments instead of their features as used in
[32]. The method groups data into clusters while maintaining

consistent cluster assignments across different augmentations
or ”views” of the same image. Initially, ”codes” are generated
by associating features with prototype vectors. Subsequently,
a ”swap” prediction task is solved, where codes obtained from
one augmentation are predicted using the other. This ensures
that the model doesn’t directly compare image features. For
two image features, zt and zs, obtained from distinct augmen-
tations of the same image, their codes qt and qs are derived by
matching these features to a set of K prototypes {c1, . . . , cK}.
The swap prediction loss function is given by

ℓ(zt, zs) = ℓ(zt, qs) + ℓ(zs, qt) (1)

where the function ℓ(z, q) measures the consistency between
features z and a code q. This is expanded into
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where znt and zns are features from the two compared im-
ages, and qnt and qns are their intermediate codes, with Cqns
and Cqnt representing their prototypes. This self-supervised
learning approach is used for training both the source and
target models.

B. Active Data Sampling

In the context of active learning, determining the uncertainty
or informativeness of a sample is crucial for selecting the
next sample to query. This is achieved through an acquisition
function employed by the active learning (AL) system. Various
works in the literature have proposed different acquisition
functions, as extensively discussed in [33].

In the active learning process, given an unlabeled dataset
Xp and the current training pool Do serving as the core-set, a
bayesian model M with parameters ω ∼ p(ω|Do) as inputs,
the acquisition function ranks batch samples based on model
uncertainty and sample representativeness. The system then
selects highly informative and representative samples from the
batch [20].



1) Acquisition Strategy: BALD [14], an uncertainty sam-
pling strategy, determines the optimal unlabeled sample, de-
noted as x∗, by evaluating the mutual information between
predictions and the model posterior. While BALD primarily
focuses on exploitative uncertainty sampling, a desire for
exploration of diverse instances can be incorporated by intro-
ducing a distance-based diversity reward, just like in CLUE
[15]. This extends the acquisition function to consider under-
explored regions in the input space through cluster-based
distances.

To implement this strategy, the indices of the weighted
instances are determined, and the Euclidean distances of these
instances are sorted in descending order. The goal is to sample
the top-k instances with the least uncertainty and high diversity
based on their Euclidean distance for training the target model.
For convenience, we will refer to this measure of uncertainty
and diversity as the A3 score.

2) Core-set Construction: We aim to overcome a limitation
of BALD arising from the use of an uninformative prior,
which results from poor initialization of the core-set. To
address this, we initialize a model using the source model to
solve a pretext classification task where the labels are given
by y ∈ {0, 90, 180, 270} which represents possible rotation
angles in degrees for the augmentations applied to the sample
following the work done in [34]. This pretext-task model
serves as the Bayesian model, M used to construct a data
pool Do. During this process, we perform inference over the
parameters θ to obtain the posterior distribution p(θ|Do) [21],
sampled by the A3 score. The data pool is then sorted by the
A3 score of the samples and grouped into n batches.

This approach not only facilitates optimal sample querying
but also addresses the cold-start problem inherent in active
learning [34]. Our acquisition strategy given in the previous
section is utilized to select the top-k samples from the first
batch of the data pool, forming the core-set for training the
target model. Subsequently, M is retrained on this core-set,
and the iterative process continues. The next batch of the data
pool is equally passed through the acquisition function and
the top-k samples are added to the core-set. This iterative
cycle involves retraining the target model and M, sampling
instances from the next batch using the acquisition function,
expanding the core-set, and so on until the sampling budget
is exhausted.

This iterative training and data sampling technique is visu-
ally depicted in Fig. 1.

C. Domain Alignment

The objective of domain adaptation is to train a model
that is invariant across domains, capable of delivering ac-
curate predictions in both the source and target domains.
Drawing upon the representative and informative data se-
lected through our active sampling technique detailed in
Section III-B, we introduce a novel training routine for self-
supervised based SFUDA. This routine incorporates two ad-
versarial losses—domain adversarial loss and virtual adversar-
ial loss—to drive the target model toward generating invariant

representations. Additionally, we adopt a swap prediction loss
(2) inspired by SwAV [31] and an entropy minimization loss
[35] as regularization techniques. These measures collectively
aim to mitigate the overfitting of representations to the target
domain and address the divergence between predictions in the
source and target domains.

1) Model Regularization: Incorporating the swap predic-
tion loss outlined in 2 as a regularization technique in our
approach, we guide the model to learn meaningful representa-
tions by predicting relationships between augmented instances.
Beyond the swap prediction loss, we introduce an additional
regularization term known as the conditional entropy min-
imization loss [10], [35]. This term constrains the model,
preventing overfitting to the target domain and mitigating
the emergence of spurious correlations [35]. This is formally
expressed as

Lent = − 1

N

N∑
i=1

K∑
k=1

fk(xi; θ) log fk(xi; θ) (3)

where f(x; θ) represents the output of the model parame-
terized by θ. This regularization term is introduced to address
the expectation that optimal decision boundaries should be
distanced from the data-dense regions of the samples, as
emphasized in [8]. This aligns with the clustering assumptions,
asserting that target samples form clusters, and the samples
within the same cluster belong to the same class.

2) Adversarial Losses: Moreover, both [35] and [8] ob-
served that the assumption in 3 holds true only if the model is
locally Lipschitz. To ensure this, we incorporate the modified
virtual adversarial loss (VAT) tailored for a self-supervised
learning setting, akin to the approach in [10]. This VAT
loss minimizes the divergence between predictions on clean
samples vs those with small perturbations. This smooths the
decision boundary and improves robustness:

Lvat = D[f(x), f(x+ rvadv)] (4)

where f(x) is the model output embedding for input x
and rvadv is the computed VAT perturbation to maximize
divergence between f(x) and f(x+ rvadv). The D is the KL
divergence. We therefore aim to minimize Lvat to enforce
local smoothness of the model output [8] and also aid the
model generalization to the target domain while still retain-
ing knowledge from the source domain without catastrophic
forgetting [36].

Additionally, we introduce a second adversarial loss to
learn an embedding space where the domain adversary cannot
reliably predict the domain from the embeddings. In this con-
text, a domain classifier D(f(x)) is co-trained with the target
model, using target embeddings extracted separately from the
source and target models to predict the model they originated
from. To optimize the domain classifier, we employ a gradient
reversal layer [13], which flips the sign of the gradients during
backpropagation. This adversarial learning approach makes the
features challenging for domain prediction, and encourages the



target model to learn to produce domain-invariant features. The
domain adversarial loss, DAL, is expressed as

Ldal = Ef(xt)∼Fs
[− logD(fs(xt))]

+ Ef(xt)∼Ft
[− log(1−D(ft(xt)))]

(5)

where D is the domain classifier, xt is the target samples
and Fs and Ft are the distributions of extracted source and
target embeddings respectively.

The key distinctions between Domain Adversarial Loss
(DAL), as described in 5, and Virtual Adversarial Loss (VAT),
as described in 4, lie in their underlying approaches. DAL
focuses on training a domain classifier to differentiate em-
beddings from the source and target models, leveraging the
distinction between the two domains. On the other hand,
VAT generates perturbations around an input to maximize the
prediction change. DAL primarily aims for global alignment
of source and target distributions, whereas VAT regulariza-
tion ensures that individual sample predictions remain locally
invariant. Additionally, DAL is designed to reduce the H-
divergence between domains, providing an upper bound on
the target error. In contrast, VAT ensures the local Lipschitz
constraint necessary for reliable empirical estimation.

The overall loss for the model is expressed as

L = Lswap + λ1Ldal + λ2(Lent + Lvat) (6)

In the overall loss for the model, λ1 represents a regular-
ization hyperparameter for the domain adversarial loss, while
λ2 serves as trade-off hyperparameter shared by the entropy
loss and the virtual adversarial loss, as suggested by [8] and
[37].

The effectiveness of A3 can be attributed to its multi-
faceted approach to domain alignment. The active learning
component ensures that the most informative target samples
are utilized, reducing the impact of noisy or irrelevant data.
Meanwhile, the adversarial training encourages the model
to learn domain-invariant features, bridging the gap between
source and target distributions. The self-supervised learning
aspect further enhances the model’s ability to capture mean-
ingful representations without relying on target labels. This
combination is particularly effective for SFUDA tasks with a
reasonable degree of shared structure between domains, even
if the surface-level statistics differ. For instance, in image
classification tasks across different photo styles (e.g., Amazon
product images to real-world images), the underlying object
structures remain consistent, allowing A3 to leverage these
commonalities effectively.

IV. EXPERIMENTS

In this section, we conduct rigorous evaluations of our
approach to investigate and prove A3’s robustness and effec-
tiveness in carrying out source-free domain adaptation.

A. Datasets

Following the baselines, we evaluated A3 on various bench-
mark datasets that represent different visual domains to gauge
its robustness and generalizability.

The Office-31 [38] dataset has 4700 images in 31 categories
from Amazon (A), DSLR (D), and Webcam (W) domains,
while Office-Home [39] has 15500 images in 65 categories
from Artistic (A), Clip-Art (C), Product (P), and Real-World
(R) domains. Additionally, we evaluated A3 on the challenging
DomainNet [40] dataset which contains images from six
domains with 345 categories each. However, following the
baselines, our evaluations of A3 were focused on four out
of the six domains: sketch, clipart, painting, and real which
shows the model’s generalization between synthetic and real
domains.

Implementation Details: We adhered to established prac-
tices by selecting ResNet-50 [41] as the architecture for
our target model, pretrained on ImageNet [1]. The network
configuration closely mirrored that of SwAV [31], with some
custom adjustments. The domain discriminator consisted of
two layers and a classification head with a single neuron
for binary classification. Our Bayesian model, integral to
the active sampling process, utilized a ResNet-50 backbone
with a classification head tailored for 4-class classification,
corresponding to the four distinct input augmentations. For
the Bayesian model, Stochastic Gradient Descent (SGD) with
a learning rate of 0.1 and a multi-step learning rate scheduler
was employed. We conducted four active learning cycles,
allocating equal sampling budgets at each stage. In the self-
supervised pretraining phase, SGD with a learning rate of 1e-4
and a cosine learning rate scheduler were utilized. Both self-
supervised pretraining and the Bayesian model implementation
incorporated a momentum of 0.9 and a weight decay of 1e-6.

B. Evaluations

We compare our proposed framework, A3 with baselines
on the benchmark datasets highlighted in Section IV-A. To
showcase the efficacy of A3, we compare it to the following
baselines: ResNet-50 [41], SHOT [3], UAN [42], InstaPBM
[43], Sentry [44], FixBi [45], GSDE [25], and LAS (LADA)
[26]

As shown in Table II, our A3 outperforms existing state-of-
the-art techniques on all the adaptation tasks on the Office-31
dataset with an improvement of 4.1%. For the Office-Home
dataset on the other, Table III shows that A3 demonstrates
highly competitive performance on 10 out of 12 transfer tasks,
achieving significant improvements in all tasks excluding
A→C and R→P. Again, we outperform LAS [26], the next
best-performing method with an average increase of 11.7%
accuracy. Finally, we show that A3 just as in the previous
baseline datasets outperforms existing methods on DomainNet
with an average improvement of 10.6% accuracy. This is
shown in Table IV.

While A3 shows overall improvements, its performance
varies across different transfer tasks. For instance, on Office-
31, A3 excels in the D→A task (94.8% accuracy), likely



due to the shared low-level features between DSLR and
Amazon domains. However, it shows more modest gains on
the A→W task (98.5%), possibly due to the larger domain
gap between Amazon and Webcam images. On Office-Home,
A3 demonstrates particular strength in transfers involving the
Art domain (e.g. A→R: 99.6%, R→A: 98.9%). This suggests
that our method effectively bridges the gap between realistic
and artistic representations. However, the improvement is less
pronounced or not evident for some intra-realistic transfers
(e.g. R→P: 93.7%), indicating room for further optimization
in scenarios with subtle domain shifts.

TABLE I: An ablation study using various A3 variants on the
A→W task. Each method utilized the pretrained target model
for classification on both the source and target datasets.

Method Source (A) Target (W)

Hybrid 98.3 98.5
Uncertainty Only 98.2 98.3
Random 94.2 95.9
Consolidated 98.3 98.5
DAL + VAT Only 97.9 98.4
Entropy Only 96.6 98.1

C. Ablation Studies

We design different variants of the framework showcasing
the contributions of each component and the effect of each
active learning adaptation cycle on the performance of the
target model.

a) Varying acquisition strategies: We evaluated the im-
pact of a hybrid acquisition strategy on A3’s performance.
Comparing uncertainty-only and random acquisition functions,
Table I demonstrates that the hybrid strategy outperforms
both. Notably, it significantly surpasses random sampling and
slightly improves upon the uncertainty-only function, empha-
sizing the importance of combining diverse data samples with
informative ones.

b) Varying alignment techniques: We examined the im-
pact of individual domain alignment components on A3. In
Table I, we display the contributions of three components,
showing that the consolidated framework (Consolidated) out-
performs all variants. Notably, the variant with only domain
adversarial loss and virtual adversarial loss (DAL + VAT Only)
performs closely to the comprehensive framework compared to
using only entropy minimization loss (Entropy Only), empha-
sizing the influence of adversarial losses on A3’s performance.

V. LIMITATIONS

While A3 demonstrates strong performance across various
domain adaptation tasks, it has limitations. Our method may
struggle in scenarios with extreme domain shifts where low-
level features differ significantly between source and target
domains. For example, adapting between natural images and
medical imagery could pose challenges. Additionally, A3’s
effectiveness might be reduced when dealing with small target

datasets, as the active learning component relies on a suffi-
ciently large pool of unlabeled data to select informative sam-
ples. Finally, like many deep learning approaches, A3 can be
computationally intensive, especially during the iterative active
learning cycles. This could limit its applicability in resource-
constrained environments or real-time adaptation scenarios.

VI. CONCLUSION

We present A3, a novel framework for SFUDA that ad-
dresses two key challenges: noisy pseudo-labels and distribu-
tion shift between source and target domains. A3 utilizes self-
supervised learning and active adversarial training to tackle
these issues. Specifically, we introduce a domain adversarial
classifier that aligns the marginal feature distributions of the
source and target domains and a virtual adversarial loss which
acts as a regularizer to prevent overfitting and encourage
model robustness. Furthermore, we propose an active sampling
strategy that computes the Shannon entropy of each target
sample to quantify the model’s uncertainty. This uncertainty
measure is combined with k-means clustering to filter out
only the most informative and diverse samples for domain
alignment. Through extensive experiments, we demonstrate
that A3 achieves superior performance compared to existing
UDA methods. In future work, it would be interesting to
explore applying A3’s domain alignment and active sampling
techniques to other UDA approaches.
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TABLE II: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50). The best accuracy is indicated in
bold, while second best is underlined.

Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1
CAN 95.0 94.5 78.0 99.1 77.0 99.8 90.6
SHOT 94.0 90.1 74.7 98.4 74.3 99.9 88.6
FixBi 95.0 96.1 78.7 99.3 79.4 100. 91.4
GSDE 96.7 96.9 78.3 98.8 79.2 100. 91.7
LAS 96.9 97.6 84.2 100. 86.0 100. 94.1
A3 (Ours) 100. 98.5 94.8 100. 94.5 100. 98.0

TABLE III: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50). The best accuracy is indicated
in bold, while the second best is underlined.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
FixBi 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
Sentry 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
GSDE 57.8 80.2 81.9 71.3 78.9 80.5 67.4 57.2 84.0 76.1 62.5 85.7 73.6
LAS 77.8 91.8 88.4 77.7 91.5 87.7 78.1 79.1 89.5 83.4 79.8 94.1 84.9
A3 (Ours) 77.7 99.7 99.6 99.6 99.3 96.6 79.1 97.9 96.8 98.9 97.9 93.7 94.8

TABLE IV: Accuracy (%) on DomainNet for unsupervised domain adaptation (ResNet-50). The best accuracy is indicated in
bold, while the second best is underlined.

Method R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P Avg
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[22] P. Rai, A. Saha, H. Daumé III, and S. Venkatasubramanian, “Domain
adaptation meets active learning,” in Proceedings of the NAACL HLT
2010 Workshop on Active Learning for Natural Language Processing,
2010, pp. 27–32.

[23] B. Fu, Z. Cao, J. Wang, and M. Long, “Transferable query selection for
active domain adaptation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 7272–7281.

[24] H. Rangwani, A. Jain, S. K. Aithal, and R. V. Babu, “S3vaada: Submod-
ular subset selection for virtual adversarial active domain adaptation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 7516–7525.

[25] T. Westfechtel, H.-W. Yeh, D. Zhang, and T. Harada, “Gradual source
domain expansion for unsupervised domain adaptation,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2024, pp. 1946–1955.

[26] T. Sun, C. Lu, and H. Ling, “Local context-aware active domain
adaptation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 18 634–18 643.

[27] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” arXiv preprint
arXiv:1412.3474, 2014.



[28] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 7167–7176.

[29] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, “Semi-
supervised domain adaptation via minimax entropy,” in Proceedings of
the IEEE/CVF international conference on computer vision, 2019, pp.
8050–8058.

[30] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[31] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” Advances in neural information processing systems, vol. 33, pp.
9912–9924, 2020.

[32] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[33] Y. Gal, “Uncertainty in deep learning,” 2016.
[34] J. S. K. Yi, M. Seo, J. Park, and D.-G. Choi, “Using self-supervised

pretext tasks for active learning,” in Proc. ECCV, 2022.
[35] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy

minimization,” Advances in neural information processing systems,
vol. 17, 2004.

[36] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[37] R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adaptation:
Unsupervised domain adaptation without source data,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 9641–9650.

[38] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual cate-
gory models to new domains,” in Computer Vision–ECCV 2010: 11th
European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010, pp.
213–226.

[39] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,
“Deep hashing network for unsupervised domain adaptation,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 5018–5027.

[40] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment
matching for multi-source domain adaptation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 1406–
1415.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[42] K. You, M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Universal domain
adaptation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 2720–2729.

[43] B. Li, Y. Wang, T. Che, S. Zhang, S. Zhao, P. Xu, W. Zhou, Y. Bengio,
and K. Keutzer, “Rethinking distributional matching based domain
adaptation,” arXiv preprint arXiv:2006.13352, 2020.

[44] V. Prabhu, S. Khare, D. Kartik, and J. Hoffman, “Sentry: Selective en-
tropy optimization via committee consistency for unsupervised domain
adaptation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 8558–8567.

[45] J. Na, H. Jung, H. J. Chang, and W. Hwang, “Fixbi: Bridging domain
spaces for unsupervised domain adaptation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 1094–1103.


