
Normal Forms

A normal form F for a set C of data objects is a form, i.e., a 
set of syntactically valid objects, with the following two 
properties:

● For every element c of C, except possibly a finite set of 

special cases, there exists some element f of F such 

that f is equivalent to c with respect to some set of 

tasks.

● F is simpler than the original form in which the elements 

of C are written.  By “simpler” we mean that at least 

some tasks are easier to perform on elements of F than 

they would be on elements of C.



Normal Forms for Context-free 

Grammars
Chomsky Normal Form, in which all rules are of 

one of the following two forms: 

● X  a, where a  ,  or

● X  BC, where B and C are elements of V - .

Advantages:

● Parsers can use binary trees.

● Exact length of derivations is known



Normal Forms for Context-free 

Grammars
Greibach Normal Form, in which all rules are of the following 

form:

● X  a , where a   and   (V - )*.

Advantages:

● Every derivation of a string s contains |s| rule 

applications.  

● Greibach normal form grammars can easily be 

converted to pushdown automata with no -

transitions.  This is useful because such PDAs are   

guaranteed to halt.



Rule Substitution

X  aYc

Y  b

Y  ZZ

We can replace the X rule with the rules:

X  abc

X  aZZc

X  aYc aZZc



Rule Substitution

Theorem: Let G contain the rules:

X  Y and Y  1 | 2 | … | n , 

Replace X  Y by:

X  1,      X  2,     …, X  n. 

The new grammar G will be equivalent to G. 



Rule Substitution
Replace   X  Y by:

X  1,      X  2,     …, X  n. 

Proof: 

● Every string in L(G) is also in L(G):

If X  Y is not used, then use same derivation.

If it is used, then one derivation is:

S  …  X  Y  k  …  w

Use this one instead:

S  …  X  k  …  w

● Every string in L(G) is also in L(G): Every new rule can

be simulated by old rules.



Normal Forms for Context-free 

Grammars

Definition: A symbol X in V is useless in a CFG 
G=(V, ∑, R, S) if there does not exist a derivation 
of the form S  wXy * wxy where w, x, y are in 
∑*.

Definition: A symbol X in V is inaccessible in a 
CFG G = (V, ∑, R, S) if X does not appear in any 
sentential form.  (inaccessible implies not 
reachable)

Definition: A symbol X is generating if X w for 
some w in ∑*.



Normal Forms for Context-free 

Grammars
Algorithm (NF1) (Is L(G) empty?)

Input: A CFG G = (V, ∑, R, S).

Output: “YES” if L(G) = , “NO” otherwise.

Method: Construct sets N0, N1, …recursively as 
follows:

1. N0 = ; i = 1;

2. Ni = {A | A  in R and  in (Ni-1  ∑)* }  Ni-1;

3.    If Ni  Ni-1 then begin i = i +1; go to 2; end;

4. Ne = Ni; 

5. If S is in Ne then output “NO” else output “YES”.



Normal Forms for Context-free 

Grammars

Example:

S  AA | AB

A  SA | AB

B  BB | b



Normal Forms for Context-free 

Grammars
Algorithm (NF2):

(Removal of inaccessible symbols)

Input: A CFG G = (V, ∑, R, S).

Output: CFG G = (V, ∑, R, S) such that

(1) L(G) = L(G),

(2) No X in V is unreachable.

Method: Construct sets N0, N1, …recursively as follows:

1. N0 = {S}; i = 1;

2. Ni = {X | some A  X is in R and A in Ni-1}  Ni-1;

3. If Ni  Ni-1 then begin i=i+1; go to 2; end;

4. V = Ni  V; ∑ = Ni  ∑; R = those productions of R 
with symbols from Ni; S = S;



Normal Forms for Context-free 

Grammars
Algorithm (NF3): (Useless Symbol Removal)

Input: A CFG G = (V, ∑, R, S).

Output: CFG G = (V, ∑, R, S) such that

(1) L(G) = L(G),

(2) No X in V is useless.

Method:

1. Apply algorithm NF1 to G to get Ne.

2. Let G1 = ((V  Ne,)  ∑, ∑, R1, S) where R1
contains those productions of R involving only 
symbols from Ne  ∑.

3. Apply algorithm NF2 to G1 to obtain G = (V, ∑, 
R, S) 



Normal Forms for Context-free 

Grammars

Example:

S  a | A

A  AB

B  b



Normal Forms for Context-free 

Grammars
Definitions:

1. A   is called -production

2. A   is called A-production

3. A  B where A and B are in V is called unit production
(or single production).

4. A variable A is nullable if A  .

5. A CFG G = (V, ∑, R, S) is -free if either (i) R has no -
productions, or (ii) there is exactly one -production S 
  and S does not appear on the right side of any 
production in R. 



Normal Forms for Context-free 

Grammars
Algorithm (NF4): Conversion to -free grammar
Input: A CFG G = (V, ∑, R, S).

Output: Equivalent -free CFG G = (V, ∑, R, S)

Method: 

1) Construct Ne = {A | A in V-∑ and A + }

2) If A  0B11B22 … Bkk is in R, k  0 and for 1  i  k 
each Bi in Ne but no symbol in any j is in Ne, 0  j  k, 
add to P all productions of the form A  0X11X22 … 
Xkk where Xi is either Bi or  , without adding A   to 
R

3) If S is in Ne add to R the productions S   | S where 
S is a new symbol and set V = V  {S}.  Otherwise 
set V = V and S =S.

4) G =(V, ∑, P, S)



Normal Forms for Context-free 

Grammars

Example:

S  aSbS | bSaS | 



Normal Forms for Context-free 

Grammars
Algorithm (NF5): Removal of unit productions
Input: An -free CFG G = (V, ∑, R, S).

Output: Equivalent -free CFG G = (V, ∑, R, S)

Method

1. Construct for each A in V-∑ the sets NA = {B | A *

B} as follows:
(a) N0 = {A}; i = 1;

(b) Ni = {C | B  C is in R and B in Ni-1}Ni-1

(c) If Ni  Ni-1then i=i+1; go to (b); else NA = Ni

2. Construct R as follows: If B   is in R and not a 
unit production, place A   in R for A such that B 
is in NA.

3. G = (V, ∑, R, S)



Normal Forms for Context-free 

Grammars

Example:

E  E + T | T

T  T * F | F

E  ( E ) | a



Normal Forms for Context-free 

Grammars

Definition: A CFG G = (V, ∑, R, S) is said to be cycle-free if 

there is no derivation of the form A * A for any A in V-∑.  

G is said to be proper it it is cycle-free, -free, and has no 

useless symbols.  

-free and no unit productions imply cycle-free.



Chomsky Normal Form

A CFG G = (V, ∑, R, S) is said to be in 

Chomsky Normal Form (CNF) if each

production in R is one of the forms

(1) A  BC with A, B, C in V-∑, or

(2) A  a with a in ∑, or

(3) If  is in L(G), then S   is a production and S does 
not appear on the right side of any production



Chomsky Normal Form

Algorithm (NF6) Conversion to CNF

Input: A proper CFG G=(V, ∑, R, S) with no single 

production

Output: A CFG G1=(V1, ∑, R1, S) such that L(G) = L(G1)

Method: From G, construct G1 as follows:

1) Add each production of the form A → a in R to R1

2) Add each production of the form A → BC in P to P1 (A, 

B, C are non terminals)

3) 3) If S →  is in R, add S →  to R1



Chomsky Normal Form

4) For each production of the form 

A → X1…Xk in R, k > 2, add to R1the following productions:

A → Y1<X2…Xk>

<X2…Xk> → Y2<X3…Xk>

…

<Xk-1Xk> → Yk-1Yk

where Yj stands for Xi if Xi is a nonterminal otherwise it is a new 

nonterminal added to V1

5) For each production of the form A → X1X2 where either X1 or 

X2 or both are terminals add to R1 the production A → Y1Y2

6) For each terminal a replaced by a Y, add the production Y → a



Chomsky Normal Form

Example:

S  bA | aB

A  bAA | aS | a

B  aBB | bB | b



Greibach Normal Form

Recursive, left-recursive, right-recursive:

A nonterminal A in a CFG G = (V,∑,R,S) is 
said to be recursive if A + A for some 
and .  If =, then A is left-recursive, if =, 
then A is right-recursive.

A grammar with at least one left-(right-) 
recursive nonterminal is said to be left-
(right-) recursive



Greibach Normal Form

Lemma: Let G = (V,∑,R,S) be a CFG in 
which A → A1 | …|Am | 1 | … |n

are all the A-productions in P and no 
begins with A. Let G1 = (V  {B}, ∑, R1, S) 
where R1 is R with the above productions 
are replaced by

A → 1 | …| n | 1B| … | nB

B →1 | … |m | 1B | …| mB

Then L(G) = L(G1)



Greibach Normal Form

Algorithm – elimination of left recursion

Input: A proper CFG G=(V,∑,R,S)

Output: A CFG G1 with no left-recursion

Method: Let V-∑ = {A1, ..., An}. Transform G so 
that if Ai →  is a production, then  begins 
with either a terminal or a symbol Aj such that 
j > i.

this can be accomplished by substitution for 
lower numbered productions and eliminating 
immediate left-recursion.



Greibach Normal Form

Example:

A → BC | a

B → CA | Ab

C → AB | CC | a



Greibach Normal Form

Definition: A CFG G = (V,∑,R,S) is said to 

be in Greibauch normal form (GNF) if G is 

-free and each non -production is of the 

form A → a where a is a terminal and  is 

a string in (V-∑)*.



Greibach Normal Form

Lemma: Let G=(V,∑,R,S) be a non-left 

recursive grammar.  Then there is linear 

order < on V-∑ such that A → B is in R, 

the A < B.

Proof: Let R be a relation A R B if and only if 

A * B for some .  R is a partial order

Extend R to a linear order



Greibach Normal Form

Algorithm: Conversion to GNF
Input: G=(V,∑,R,S), G non-left-recursive, proper CFG
Output: A CFG G1 in GNF
Method: 1) Construct a linear order on V-∑
2) Set i= n-1
3) If i=0 go to step 5. Otherwise replace each 

production of the form Ai → Aj, j>i, by
Ai → 1 | …|m where Aj → 1| …|m

are all the Aj-productions (i’s begin with terminal)
4) Set i=i-1; go to step 2
5) For each production A → aX1…Xk, if Xj is a terminal 

replace it by a nonterminal Yj and add a production 
Yj → Xj



Greibach Normal Form

Example: 

E → T | TE1

E1 → +T | +TE1

T →  F | FT1

T1 → *F | *FT1

F →  (E) | a


