Normal Forms

A normal form F for a set C of data objects Is a form, i.e., a
set of syntactically valid objects, with the following two
properties:

e For every element c of C, except possibly a finite set of
special cases, there exists some element f of F such
that f is equivalent to ¢ with respect to some set of
tasks.

e F is simpler than the original form in which the elements
of C are written. By “simpler’ we mean that at least
some tasks are easier to perform on elements of F than
they would be on elements of C.

Normal Forms for Context-free
Grammars

Chomsky Normal Form, in which all rules are of
one of the following two forms:

e X > a whereae X, or
e X = BC, where B and C are elements of V - 2.

Advantages:

e Parsers can use binary trees.
e Exact length of derivations is known

Normal Forms for Context-free

Grammars

Greibach Normal Form, in which all rules are of the following
form:

e X >af,whereaeXandf e (V-22)*.
Advantages:

e Every derivation of a string s contains [s| rule
applications.

e Greibach normal form grammars can easily be
converted to pushdown automata with no e-
transitions. This is useful because such PDAs are
guaranteed to halt.

CS 2313 FORMAL LANGUAGE THEQRY

Rule Substitution

X > a¥Yc
Y > b

Y > ZZ

We can replace the X rule with the rules:

X = abc
X —>allc

)|(= a¥c = aZTZC

CS 2313 FORMAL LANGUAGE THEQRY

Rule Substitution

Theorem: Let G contain the rules:

X—>aoYB and Y>>y v |-V,
Replace X — o Y[by:

X—=>ayB, X->ay,B, ..., X-—>ayp.

The new grammar G “will be equivalent to G.

Rule Substitution

Replace X — aYp by:
X—=>ayB, X->ay,B, ..., X—>ayp.

Proof:
e Every string in L(G) is also in L(G):

If X > aYP Is not used, then use same derivation.
If it is used, then one derivation is:
S= ... =>X¢g=o00YBp=oaypo= ... =>W

Use this one Instead:
S=...=2>X¢g=> ooy o= ... > w

e Every string in L(G) is also in L(G): Every new rule can
be simulated by old rules.

AR MEA LS M AP T /M ™ AN m S o
(OSHS 'fﬁDL G E-‘:f\:"F%"}‘w’e‘ (AN NINILE S /A (o
W) o) Uw) U N/ NN AW N N N P g

Normal Forms for Context-free
Grammars

Definition: A symbol X in V is useless in a CFG
G=(V, >, R, S) if there does not exist a derivation
of the form S =* wXy =" wxy where w, X, y are in
2

Definition: A symbol X in V is inaccessible in a
CFGG=(V, >, R, S)if Xdoes not appear in any
sentential form. (inaccessible implies not
reachable)

Definition: A symbol X is generating if X=* w for
somewin)"

- 4/5\ / 55\ [_) _\3— TL_—’/;{\‘| *:_\\\»'
G 313 FORMAL LANGUAGE THEQR

Normal Forms for Context-free
Grammars

Algorithm (NF1) (Is L(G) empty?)
Input: ACFG G =(V, >, R, S).
Output: “YES” if L(G) = J, "NO” otherwise.

Method: Construct sets N,, N4, ...recursively as
follows:

= 1=1;
={A|A—>ainRandain(N;uU>) }UN;
If N; # N,_; then begin i =1+1; go to 2; end;
|\Ie = I\Ii;
If S is in N, then output “NO” else output “YES".

o s W e

CS 2313 FORMAL LANGUAGE THEQRY

Normal Forms for Context-free
Grammars

Example:
S—>AA|AB
A— SA|AB
B—>BB]|b

F\s LL \JjW(

Normal Forms for Context-free

Grammars

Algorithm (NF2):
(Removal of inaccessible symbols)

Input: ACFG G =(V, >, R, S).
Output: CFG G’ = (V', >', R, S) such that

(1) L(G) = L(G),

(2) No X in V' is unreachable.
Method: Construct sets N,, N, ...recursively as follows:
1. Ng={S}hi=1
2. ={X|someA - aXpBisinRandAin N, ;} U N, ;;
3. If N, = N, then begin i=1+1; go to 2; end;
4. V'=NnV,; Y =N n ;R =those productions of R

with symbols from N,, S=S;

3 FORMAL LANGUA

Normal Forms for Context-free
Grammars

Algorithm (NF3): (Useless Symbol Removal)

Input: ACFG G =(V, >, R, S).
Output: CFG G' = (V', >', R, S) such that

(1) L(G') = L(G),
(2) No X In V' Is useless.

Method:

1.
2.

Apply algorithm NF1 to G to get N..

LetG, = (VN Ng)U2, 2, R S)whereR
contalns those productlons of1 R involving only
symbols from N, U).

Appl); algorithm NF2 to G, to obtain G’ = (V', >,
R, S

_ CS 3312 FORMAL LANGUAGE THEQRY _

Normal Forms for Context-free
Grammars

Example:
S—>alA
A — AB
B—->b

Normal Forms for Context-free

Grammars
Definitions:
1. A — gis called gproduction
2. A—> als called A-production
3. A—> Bwhere Aand B are in V is called unit production
(or single production).
4. Avariable Ais nullable if A =" ¢.
5. ACFG G=(V,)>,R,S)is &iree if either (i) R has no &-

productions, or (ii) there is exactly one e-production S
— ¢ and S does not appear on the right side of any
production in R.

Normal Forms for Context-free

Grammars
Algorithm (NF4): Conversion to s-free grammar

Input: ACFG G =(V, >, R, S).
Output: Equivalent e-free CFG G' = (V', >', R, §')

Method:

1) Construct N, ={A|AInV-) and A =" ¢}

2) IfA—- « Blocleocz B,o,isinR,k>0and forl1<i<k
each B, m N, but no symbol Inany o, isin Ny, 0 <J <K,
add to P’ all productlons of the form A — OLg X 10 X500 ..
X0y Where X; is either B, or ¢, without addlng A—cto
RI

3) IfSisin N, add to R’ the productions S’ — ¢ | S where
S'is a new symbol and set V' =V U {S'}. Otherwise
setV'=Vand S’ =S.

4) =V, >, P, S

_ CS 5313 FORMAL LANGUAGE THEQORY _
Normal Forms for Context-free
Grammars

Example:
S > aSbS | bSaS | ¢

Normal Forms for Context-free

Grammars
Algorithm (NF5): Removal of unit productions

Input: An e-free CFG G = (V, >, R, S).
Output: Equivalent e-free CFG G’ = (V, >, R’,)
Method

1. Construct foreach Ain V-) thesets N, ={B |A="
B} as follows:

(@) No={Ah1=1;
by N,={C|B—>CisinRandB in N, }UN
(c) If Ny = N,_;then i=i+1; go to (b); else N, = N,
2. Construct R" as follows: If B - o Is In R and not a
unit production, place A — o in R’ for A such that B
IS IN N,.
3.G'=(V, >, R, 9)

_ CS 3312 FORMAL LANGUAGE THEQRY _

Normal Forms for Context-free
Grammars

Example:
E>E+T|T
To>T*F|F
E—>(E)]|a

3 FORMAL LANGUAGE THEQRY

Normal Forms for Context-free
Grammars

Definition: ACFG G = (V, >, R, S) is said to be cycle-free if
there is no derivation of the form A =*Afor any Ain V-}.
G Is said to be proper it it is cycle-free, e-free, and has no
useless symbols.

e-free and no unit productions imply cycle-free.

QRMAL LANGUAGE THEQRY

Chomsky Normal Form

ACFG G=(V,),R, S)issaid to be in
Chomsky Normal Form (CNF) if each

production in R is one of the forms

(1)
(2)
(3)

A —> BCwithA, B, CinV-), or
A—awithain), or

If eisin L(G), then S — ¢ is a production and S does
not appear on the right side of any production

F\s LL \JjW(

Chomsky Normal Form

Algorithm (NF6) Conversion to CNF

Input: A proper CFG G=(V, >, R, S) with no single
production

Output: A CFG G,=(V,, >, Ry, S) such that L(G) = L(G,)

Method: From G, construct G, as follows:

1) Add each production of the form A — ain Rto R,

2) Add each production of the form A — BC in P to P, (A,
B, C are non terminals)

3) 3)IfS—c¢eisinR,add S —» cto R,

A MmA S A M=
C® E2 ﬂﬂ JE
W) oded) U o) pk i

Chomsky Normal Form

4) For each production of the form
A— X;.. X InR, k> 2, add to R,;the following productions:
A— Y <X,.. X>
<Xy.. X > = Y, <X;... X >

K1 Xi> = Vi Y
where Y; stands for X; if X; is a nonterminal otherwise it is a new
nonterminal added to V,

5) For each production of the form A — X, X, where either X, or
X, or both are terminals add to R, the production A — Y,Y,

6) For each terminal a replaced by a Y, add the production Y — a

_ GCS 3313 FORMAL LANGUAGE THEQRY _

Chomsky Normal Form

Example:
S—>DbA|aB
A—>DbAA|aS|a
B—>aBB|bB|b

Greibach Normal Form

Recursive, left-recursive, right-recursive:

Anonterminal Aina CFG G =(V,) ,R,S) is
said to be recursive if A=* aAp for some 3
and a. If a=g, then Ais left-recursive, If f=e,
then A Is right-recursive.

A grammar with at least one left-(right-)
recursive nonterminal 1s said to be left-
(right-) recursive

Greibach Normal Form

Lemma: Let G = (V,) ,R,S)be a CFG in
which A — Ao, | ...|Aa, | B,]| ... B,
are all the A-productions in P and no f3
beginswith A. Let G, =(Vu {B}, >, R, S)
where R, Is R with the above productions
are replaced by

A= Byl .| Byl BBl ... | BB
B—o,|...lo,|o,B]...] 0B

Then L(G) = L(G,)

Greibach Normal Form

Algorithm — elimination of left recursion

Input: A proper CFG G=(V,) ,R,S)

Output: A CFG G, with no left-recursion
Method: Let V-) ={A,, ..., A }. Transform G so

that iIf A, — o Is a production, then a begins

with either a terminal or a symbol A; such that
j>1

this can be accomplished by substitution for
lower numbered productions and eliminating
Immediate left-recursion.

CS 2313 FORMAL LANGUAGE THEQRY

Greibach Normal Form

Example:
A— BC|a
B—> CA|ADb
C—->AB|CC|a

TR ERAL B MEAATEYMT /A I\ R A REE =L ATV
CS 2313 FORMAL LANGUAGE THEQRY

Greibach Normal Form

Definition: ACFG G = (V,) ,R,S) is said to
be in Greibauch normal form (GNF) if G Is
e-free and each non g-production is of the
form A — ao where a is a terminal and a IS
a string in (V->)*.

AE ERAL D EATMNANT M ANAERDNTA /RMEE =LA TN
(MS &5 m 2 |k :\E‘J \"/! _\LI JA\ \‘J—:-‘ /AN (j E|- ;-L:/\”'
Lo DU [FLIRIMIA L.—_,u@ \‘;rg—_@E I =\ N

Greibach Normal Form

Lemma: Let G=(V,) ,R,S) be a non-left
recursive grammar. Then there is linear
order < on V-) suchthatA —» Ba isin R,
the A < B.

Proof. Let R be a relation AR B if and only if
A =" Ba for some a. R is a partial order

Extend R to a linear order

Greibach Normal Form

Algorithm: Conversion to GNF
Input: G=(V,> ,R,S), G non-left-recursive, proper CFG
Output: A CFG G, in GNF
Method: 1) Construct a linear order on V-)
2) Seti=n-1
) If 1=0 tgo to step 5. Otherwise replace each

produc lon of the form A, — Aa, |, by

A — Bia| ... |Bno WhereA N Byl ---IBm

are all the A -productions (B, s begin Wlth terminal)
4) Set i=1-1; go to step 2

5) For each production A — aX,...X, If X; is a terminal
{(epla%(e it by a nonterminal Y; and add @ production
_)

_ CS 2313 FORMAL LANGUAGE THEQRY _

Greibach Normal Form

Example:
E—->T|TE,
E1 — +T | +TE1
T— F|FT,

T, - *F | *FT,
F— (E)|a

