
Regular Languages

Regular

Language

Regular Expression

Finite State

Machine

L

Accepts

Regular Expressions

The regular expressions over an alphabet are all and

only the strings that can be obtained as follows:

1. is a regular expression.

2. is a regular expression.

3. Every element of is a regular expression.

4. If , are regular expressions, then so is .

5. If , are regular expressions, then so is . (+)

6. If is a regular expression, then so is *.

7. is a regular expression, then so is +.

8. If is a regular expression, then so is ().

Regular Expressions

Examples:

If = {a, b}, the following are regular expressions:

 a

 (a b)*

 abba

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular
expressions:

1. L() = .

2. L() = {}.

3. L(c), where c = {c}.

4. L() = L() L().

5. L() = L() L().

6. L(*) = (L())*.

7. L(+) = L(*) = L() (L())*. If L() is equal to , then L(+)
is also equal to . Otherwise L(+) is the language that is
formed by concatenating together one or more strings drawn
from L().

 8. L(()) = L().

Regular Sets

• Definition:

1. Basis: , { } and {a}, for every a are regular sets over .

2. Recursive step: Let X and Y be regular sets over . Then the

sets XY, XY, and X* are regular sets over .

3. Closure: X is a regular set over only if it can be obtained

from the basis elements by a finite number of applications of

the recursive step

• Examples: Let = {0, 1}

• Following are some regular sets over :

• , { }, {0}, {1}, {00, 11}, {0}*, {0, 1}*

Analyzing a Regular Expression

 L((a b)*b) = L((a b)*) L(b)

 = (L((a b)))* L(b)

 = (L(a) L(b))* L(b)

 = ({a} {b})* {b}

 = {a, b}* {b}

Constructing Regular Expression

 L = {w {a, b}*: |w| is even}

 ((a b) (a b))*

 (aa ab ba bb)*

L = {w {a, b}*: w contains an odd number of a’s}

 b* (ab*ab*)* a b*

 b* a b* (ab*ab*)*

Analyzing a Regular Expression

 a* b* (a b)*

(ab)* a*b*

Operator Precedence in Regular

Expressions

 Regular Arithmetic

 Expressions Expressions

Highest Kleene star exponentiation

 concatenation multiplication

Lowest union addition

 a b* c d* x y2 + i j2

Kleene’s Theorem

 Finite state machines and regular expressions define the
same class of languages. To prove this, we must show:

Theorem: Any language that can be defined with a regular
expression can be accepted by some FSM and so is
regular.

Theorem: Every regular language (i.e., every language
that can be accepted by some DFSM) can be defined with
a regular expression.

For Every Regular Expression

There is a Corresponding FSM
Proof by construction (construct FSM corresponding to re:

 :

 A single element of :

 :

For Every Regular Expression

There is a Corresponding FSM
Proof by construction (construct FSM corresponding to re:

If is the regular expression and if both L() and L()

are regular:

For Every Regular Expression

There is a Corresponding FSM
Proof by construction (construct FSM corresponding to re:

If is the regular expression and if both L() and L()

are regular:

For Every Regular Expression

There is a Corresponding FSM
Proof by construction (construct FSM corresponding to re:

If is the regular expression * and if L() is regular:

For Every Regular Expression

There is a Corresponding FSM
Example:

(b ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

For Every Regular Expression

There is a Corresponding FSM
Example:

(b ab)*

An FSM for (b ab):

b

a b

For Every Regular Expression

There is a Corresponding FSM
Example:

(b ab)*

An FSM for (b ab)*:

b

a b

The Algorithm fsmtoregexheuristic

fsmtoregexheuristic(M: FSM) =

 1. Remove unreachable states from M.

 2. If M has no accepting states then return .

 3. If the start state of M is part of a loop, create a new start state s

 and connect s to M’s start state via an -transition.

 4. If there is more than one accepting state of M or there are any

 transitions out of any of them, create a new accepting state and

 connect each of M’s accepting states to it via an -transition. The

 old accepting states no longer accept.

 5. If M has only one state then return .

 6. Until only the start state and the accepting state remain do:

 6.1 Select rip (not s or an accepting state).

 6.2 Remove rip from M.

 6.3 *Modify the transitions among the remaining states so M

 accepts the same strings.

 7. Return the regular expression that labels the one remaining

 transition from the start state to the accepting state.

The Algorithm fsmtoregexheuristic

Example:

The Algorithm fsmtoregexheuristic

Example:

1. Create a new initial state and a new, unique accepting

state, neither of which is part of a loop.

The Algorithm fsmtoregexheuristic

Example continued:

2. Remove states and arcs and replace with arcs labelled

 with larger and larger regular expressions.

The Algorithm fsmtoregexheuristic

Example continued:

Remove state 3:

The Algorithm fsmtoregexheuristic

Example continued:

Remove state 2:

The Algorithm fsmtoregexheuristic

Example continued:

Remove state 1:

Further Modifications to M

We require that, from every state other than the accepting state there

must be exactly one transition to every state (including itself) except the

start state. And into every state other than the start state there must be

exactly one transition from every state (including itself) except the

accepting state.

1. If there is more than one transition between states p and q,

 collapse them into a single transition:

2. If any of the required transitions are missing, add them:

3. Choose a state. Rip it out. Restore functionality

The Algorithm fsmtoregex

Defining R(p, q)

After removing rip, the new regular expression that should label the
transition from p to q is:

 R(p, q) /* Go directly from p to q

 /* or

 R(p, rip) /* Go from p to rip, then

 R(rip, rip)* /* Go from rip back to itself

 any number of times, then

 R(rip, q) /* Go from rip to q

Without the comments, we have:

 R = R(p, q) R(p, rip) R(rip, rip)* R(rip, q)

The Algorithm fsmtoregex

fsmtoregex(M: FSM) =

 1. M = standardize(M: FSM).

 2. Return buildregex(M).

standardize(M: FSM) =

 1. Remove unreachable states from M.

 2. If necessary, create a new start state.

 3. If necessary, create a new accepting state.

 4. If there is more than one transition between states p

 and q, collapse them.

 5. If any transitions are missing, create them with label

 .

The Algorithm fsmtoregex

buildregex(M: FSM) =

 1. If M has no accepting states then return .

 2. If M has only one state, then return .

 3. Until only the start and accepting states remain do:

 3.1 Select some state rip of M.

 3.2 For every transition from p to q, if both p

 and q are not rip then do

 Compute the new label R for the transition

 from p to q:

 R (p, q) = R(p, q) R(p, rip) R(rip, rip)* R(rip, q)

 3.3 Remove rip and all transitions into and out of it.

 4. Return the regular expression that labels the

 transition from the start state to the accepting state.

Regular Expression Construction

Construction of regular expression from FSM:

Rij
(k) – regular expression representing the set of labels of all paths from

state i to state j going through intermediate states {1, 2, 3, …, k} only
(defined recursively)

R1f
(n) – regular expression representing strings accepted by f, f is in F

Equivalent regular expression is the union of all R1f
(n)

Construction:

BASE:

Rij
(0) = a1 + a2 + … + ak where i j and am are labels of arcs from state i to

state j.

Rij
(0) = + a1 + a2 + … + ak where i = j and am are labels of arcs from state i

to state j.

INDUCTON:

Rij
(k) = Rij

(k-1) + Rik
(k-1)(Rkk

(k-1))*Rkj
(k-1)

FSM to Regular Expressions

Example:

 R = R(p, q) R(p, rip) R(rip, rip)* R(p, rip)

Let rip be state 2. Then:

R (1, 3) = R(1, 3) R(1, rip)R(rip, rip)*R(rip, 3)

 = R(1, 3) R(1, 2)R(2, 2)*R(2, 3)
 = a b* a

 = ab*a

Simplifying Regular Expressions
Regex’s describe sets:

 ● Union is commutative: = .

 ● Union is associative: () = ().

 ● is the identity for union: = = .

 ● Union is idempotent: = .

Concatenation:

 ● Concatenation is associative: () = ().

 ● is the identity for concatenation: = = .

 ● is a zero for concatenation: = = .

Concatenation distributes over union:

 ● () = () ().

 ● () = () ().

Kleene star:

 ● * = .

 ● * = .

 ●(*)* = *.

 ● ** = *.

 ●()* = (**)*.

Applications of regular expressions

• UNIX

• Keyword search

• Given a protein or DNA sequence, find others that are

likely to be evolutionarily close to it

• Using Regular Expressions in the Real World

• Matching numbers

• Matching ip addresses

• Finding doubled words

• Identifying spam

• Trawl for email addresses

• …

