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Regular Expressions 

The regular expressions over an alphabet  are all and 

only the strings that can be obtained as follows: 

 

1.  is a regular expression. 

2.  is a regular expression. 

3. Every element of  is a regular expression. 

4. If  ,  are regular expressions, then so is . 

5. If  ,  are regular expressions, then so is . (+) 

6. If  is a regular expression, then so is *. 

7.  is a regular expression, then so is +. 

8. If  is a regular expression, then so is (). 

 



Regular Expressions 

Examples: 

 

If  = {a, b}, the following are regular expressions: 

 

  

  

 a 

 (a  b)* 

 abba   

 



Regular Expressions Define Languages 

Define L, a semantic interpretation function for regular 
expressions: 

 

1. L() = . 

2. L() = {}. 

3. L(c), where c   = {c}. 

4. L() = L() L().  

5. L(  ) = L()  L().  

6. L(*) = (L())*.   

7. L(+) = L(*) = L() (L())*.  If L() is equal to , then L(+) 
is also equal to .  Otherwise L(+) is the language that is 
formed by concatenating together one or more strings drawn 
from L(). 

 8. L(()) = L().  



Regular Sets 

• Definition: 

1. Basis: , { } and {a}, for every a   are regular sets over . 

2. Recursive step:  Let X and Y be regular sets over . Then the 

sets XY,  XY, and X* are regular sets over . 

3. Closure: X is a regular set over  only if it can be obtained 

from the basis elements by a finite number of applications of 

the recursive step 

 

• Examples: Let  = {0, 1} 

• Following are some regular sets over : 

• , { }, {0}, {1}, {00, 11}, {0}*, {0, 1}*  



Analyzing a Regular Expression 

 L((a  b)*b)  =  L((a  b)*)  L(b) 

 

                      = (L((a  b)))* L(b) 

 

                      = (L(a)  L(b))* L(b) 

 

                       = ({a}  {b})* {b} 

 

                       = {a, b}* {b} 



Constructing Regular Expression 

 L = {w  {a, b}*: |w| is even} 

 

  ((a  b) (a  b))* 

 

  (aa  ab    ba  bb)* 

 

L = {w  {a, b}*: w contains an odd number of a’s} 

 

  b* (ab*ab*)* a b* 

 

  b* a b* (ab*ab*)* 



Analyzing a Regular Expression 

 a*  b*  (a  b)* 

 

 

 

 

(ab)*  a*b* 



Operator Precedence in Regular 

Expressions  
  

   Regular  Arithmetic 

   Expressions  Expressions 

 

Highest  Kleene star  exponentiation 

 

   concatenation  multiplication 
  

 

Lowest   union   addition 

 
 

    

 

   a b*  c d*  x y2 + i j2 

 



Kleene’s Theorem  

 Finite state machines and regular expressions define the 
same class of languages.  To prove this, we must show: 

 

 

Theorem: Any language that can be defined with a regular 
expression can be accepted by some FSM and so is 
regular. 

 

 

Theorem: Every regular language (i.e., every language 
that can be accepted by some DFSM) can be defined with 
a regular expression.  



For Every Regular Expression  

There is a Corresponding FSM  
Proof by construction (construct FSM corresponding to re:  

 : 

 

 

 

    A single element of : 

  

 

             :                                            



For Every Regular Expression  

There is a Corresponding FSM  
Proof by construction (construct FSM corresponding to re:  

If  is the regular expression    and if both L() and L() 

are regular:  

 



For Every Regular Expression  

There is a Corresponding FSM  
Proof by construction (construct FSM corresponding to re:  

If  is the regular expression  and if both L() and L() 

are regular: 

 



For Every Regular Expression  

There is a Corresponding FSM  
Proof by construction (construct FSM corresponding to re:  

If  is the regular expression * and if L() is regular: 

 



For Every Regular Expression  

There is a Corresponding FSM  
Example: 

 
(b  ab)* 

An FSM for b          An FSM for a  An FSM for b 

An FSM for ab: 



For Every Regular Expression  

There is a Corresponding FSM  
Example: 

 
(b  ab)* 

An FSM for (b  ab): 

b 

a b  

  

  



For Every Regular Expression  

There is a Corresponding FSM  
Example: 

 
(b  ab)* 

An FSM for (b  ab)*: 
 

b 

a b  

  

  

  

 



The Algorithm fsmtoregexheuristic  

fsmtoregexheuristic(M: FSM) =  

    1. Remove unreachable states from M. 

    2. If M has no accepting states then return . 

    3. If the start state of M is part of a loop, create a new start state s  

        and connect s to M’s start state via an -transition.   

    4. If there is more than one accepting state of M or there are any  

        transitions out of any of them, create a new accepting state and  

        connect each of M’s accepting states to it via an -transition.  The  

        old accepting states no longer accept. 

    5. If M has only one state then return . 

    6. Until only the start state and the accepting state remain do: 

        6.1 Select rip (not s or an accepting state).   

        6.2 Remove rip from M. 

        6.3 *Modify the transitions among the remaining states so M  

              accepts the same strings.  

    7. Return the regular expression that labels the one remaining  

        transition from the start state to the accepting state.  



The Algorithm fsmtoregexheuristic  

Example: 



The Algorithm fsmtoregexheuristic  

Example: 

1. Create a new initial state and a new, unique accepting 

state, neither of which is part of a loop. 



The Algorithm fsmtoregexheuristic  

Example continued: 

2. Remove states and arcs and replace with arcs labelled  

    with larger and larger regular expressions. 



The Algorithm fsmtoregexheuristic  

Example continued: 

Remove state 3: 



The Algorithm fsmtoregexheuristic  

Example continued: 

Remove state 2: 



The Algorithm fsmtoregexheuristic  

Example continued: 

Remove state 1: 



Further Modifications to M 

We require that, from every state other than the accepting state there 

must be exactly one transition to every state (including itself) except the 

start state.  And into every state other than the start state there must be 

exactly one transition from every state (including itself) except the 

accepting state.  

 

1. If there is more than one transition between states p and q,  

    collapse them into a single transition: 

2. If any of the required transitions are missing, add them: 

3. Choose a state.  Rip it out.  Restore functionality 

 



The Algorithm fsmtoregex  

Defining R(p, q)  

 

After removing rip, the new regular expression that should label the 
transition from p to q is: 
 

 R(p, q)   /* Go directly from p to q 

    /*          or 

 R(p, rip)   /* Go from p to rip, then 

 R(rip, rip)*   /* Go from rip back to itself  

                                               any number of times, then 

 R(rip, q)   /* Go from rip to q  
 

 

Without the comments, we have: 
 

 R = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q)  

 



The Algorithm fsmtoregex  

fsmtoregex(M: FSM) =  

    1. M = standardize(M: FSM). 

    2. Return buildregex(M). 

 

 

standardize(M: FSM) =  

    1. Remove unreachable states from M. 

    2. If necessary, create a new start state.   

    3. If necessary, create a new accepting state.   

    4. If there is more than one transition between states p 

     and q, collapse them. 

    5. If any transitions are missing, create them with label 

     . 

 



The Algorithm fsmtoregex  

buildregex(M: FSM) =  

    1. If M has no accepting states then return . 

    2. If M has only one state, then return . 

    3. Until only the start and accepting states remain do: 

        3.1 Select some state rip of M.   

        3.2 For every transition from p to q, if both p 

              and q are not rip then do 

           Compute the new label R for the transition 

    from p to q: 
   

         R (p, q) = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q)   

 

        3.3 Remove rip and all transitions into and out of it. 

    4. Return the regular expression that labels the     

        transition from the start state to the accepting state. 
 



Regular Expression Construction 

Construction of regular expression from FSM: 

Rij
(k) – regular expression representing the set of labels of all paths from 

state i to state j going through intermediate states {1, 2, 3,   …, k} only 
(defined recursively) 

R1f
(n) – regular expression representing strings accepted by f, f is in F 

Equivalent regular expression is the union of all R1f
(n) 

Construction: 

BASE: 

Rij
(0) = a1 + a2 + … + ak where i  j and am are labels of arcs from state i to 

state j. 

Rij
(0) =  + a1 + a2 + … + ak where i = j and am are labels of arcs from state i 

to state j. 

INDUCTON: 

Rij
(k) = Rij

(k-1) + Rik
(k-1)(Rkk

(k-1))*Rkj
(k-1) 

 



FSM to Regular Expressions 

Example: 

 

 R = R(p, q)  R(p, rip) R(rip, rip)* R(p, rip)   

 

Let rip be state 2.  Then: 

 

R (1, 3)  = R(1, 3)  R(1, rip)R(rip, rip)*R(rip, 3) 

             = R(1, 3)  R(1, 2)R(2, 2)*R(2, 3) 
  =               a         b*        a 

  = ab*a 



Simplifying Regular Expressions 
Regex’s describe sets: 

  ● Union is commutative:     =   . 

  ● Union is associative: (  )   =   (  ). 

  ●  is the identity for union:     =    = . 

  ● Union is idempotent:     =  . 
 

Concatenation: 

  ● Concatenation is associative:  () = (). 

  ●  is the identity for concatenation:    =   = . 

  ●  is a zero for concatenation:    =   = . 
 

Concatenation distributes over union: 

  ● (  )  = ( )  ( ).   

  ●  (  ) = ( )  ( ).  
 

Kleene star: 

  ● * = . 

  ● * = . 

  ●(*)* = *.  

  ● ** = *.   

  ●(  )* = (**)*. 



Applications of regular expressions 

• UNIX 

• Keyword search 

• Given a protein or DNA sequence, find others that are 

likely to be evolutionarily close to it 

• Using Regular Expressions in the Real World  

• Matching numbers 

• Matching ip addresses 

• Finding doubled words 

• Identifying spam 

• Trawl for email addresses 

• … 


