
Regular and Nonregular Languages

a*b* is regular.

{anbn: n  0} is not.

{w  {a, b}* : every a is immediately followed by b} is

regular.

{w  {a, b}* : every a has a matching b somewhere} is not

Questions:

 ● Showing that a language is regular.

 ● Showing that a language is not regular.

Showing that a Language is Regular

Theorem: Every finite language is regular.

Proof: If L is the empty set, then it is defined by the regular

expression  and so is regular. If it is any finite language

composed of the strings s1, s2, … sn for some positive

integer n, then it is defined by the regular expression:

 s1  s2  …  sn

So it too is regular.

Showing that a Language is Regular

Example:

Let L = L1  L2, where:

 L1 = {anbn, n  0}, and

 L2 = {bnan, n  0}

 L1 and L2 are infinite however

 L = {  } is regular

Showing that a Language is Regular

1. Show that L is finite.

2. Exhibit an FSM for L.

3. Exhibit a regular expression for L.

4. Show that the number of equivalence classes of L is

 finite.

5. Exhibit a regular grammar for L.

6. Exploit the closure theorems

Closure Properties of Regular

Languages
 ● Union

 ● Concatenation

 ● Kleene star

 ● Complement

 ● Intersection

 ● Difference

 ● Reverse

 ● Letter substitution

Letter Substitution

 ● Let 1 and 2 be alphabets.

● Let sub be any function from 1 to 2*.

Example:

Let: 1 = {a, b},

 2 = {0, 1},

 sub(a) = 0, and

 sub(b) = 11.

Letter Substitution

 ● letsub is a letter substitution function iff:

 letsub(L1) = {w  2* : y  L1 and

 w = y except that:

 every character c of y

 is replaced by sub(c)}.

Example:

 sub(a) = 0, and

 sub(b) = 11.

Then letsub({anbn, n  0}) = 0n12n

Showing that a Language is Not

Regular
 Every regular language can be accepted by some FSM.

It can only use a finite amount of memory to record

essential properties.

 Example:

 {anbn, n  0} is not regular

Showing that a Language is Not

Regular
The only way to generate/accept an infinite language with a finite
description is to use:

Kleene star (in regular expressions), or

cycles (in automata).

This forces some kind of simple repetitive cycle within the
strings.

Example:

 ab*a generates aba, abba, abbba, abbbba, etc.

Example:

 {an : n  1 is a prime number} is not regular.

Exploiting the Repetitive Property

If an FSM with n states accepts any string of length  n, how
many strings does it accept?

L = bab*ab

 b a b b b b a b

 x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab

Theorem – Long Strings

Theorem: Let M = (K, , , s, A) be any DFSM. If M

accepts any string of length |K| or greater, then that string

will force M to visit some state more than once (thus

traversing at least one loop).

Proof: M must start in one of its states. Each time it reads

an input character, it visits some state. So, in processing a

string of length n, M creates a total of n + 1 state visits. If

n+1 > |K|, then, by the pigeonhole principle, some state

must get more than one visit. So, if n  |K|, then M must

visit at least one state more than once.

The Pumping Theorem for Regular

Languages

If L is regular, then every long string in L is pumpable.

So, k  1

 ( strings w  L, where |w|  k

 ( x, y, z (w = xyz,

 |xy|  k,

 y  , and

 q  0 (xyqz is in L)))).

Example: {anbn: n  0} is not Regular
If L were regular, then there would exist some k such that any string w where |w|  k
must satisfy the conditions of the theorem. Let w = ak/2bk/2. Since |w|  k, w must
satisfy the conditions of the pumping theorem. So, for some x, y, and z, w = xyz,
|xy|  k, y  , and q  0, xyqz is in L. We show that no such x, y, and z exist.
There are 3 cases for where y could occur: We divide w into two regions:

 aaaaa…..aaaaaa | bbbbb…..bbbbbb

 1 | 2

So y can fall in:

 ● (1): y = ap for some p. Since y  , p must be greater than 0. Let q = 2.

 The resulting string is ak+pbk. But this string is not in L, since it has

 more a’s than b’s.

 ● (2): y = bp for some p. Since y  , p must be greater than 0. Let q = 2.

 The resulting string is akbk+p. But this string is not in L, since it has

 more b’s than a’s.

 ● (1, 2): y = apbr for some non-zero p and r. Let q = 2. The resulting

 string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no x, y, z exist. So L is not regular

Using the Pumping Theorem
If L is regular, then every “long” string in L is pumpable.

To show that L is not regular, we find one that isn’t.

To use the Pumping Theorem to show that a language L is not
regular, we must:

1. Choose a string w where |w|  k. Since we do not know

 what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of equivalence

 classes that can be considered together.

3. For each such class of possible y values where |xy|  k

 and y  :

 Choose a value for q such that xyqz is not in L.

Example: L = {an: n is prime}
Let w = aj, where j is the smallest prime number > k+1.

y = ap for some p.

q  0 (a|x| + |z| +q|y| must be in L). So |x| + |z| +q|y| must be prime.

But suppose that q = |x| + |z|. Then:

 |x| + |z| +q|y| = |x| + |z| + (|x| + |z|)y

 = (|x| + |z|)(1 + |y|),

which is non-prime if both factors are greater than 1:

 (|x| + |z|) > 1 because |w| > k+1 and |y|  k.

 (1 + |y|) > 1 because |y| > 0.

Using the Closure Properties
The two most useful ones are closure under:

Intersection

Complement

Using the Closure Properties
The two most useful ones are closure under:

Intersection and Complement

Example:

L = {w  {a, b}*: #a(w) = #b(w)}

If L were regular, then:

 L = L  a*b*

would also be regular. But it isn’t.

Using the Closure Properties
L = {aibj: i, j  0 and i  j}

Try to use the Pumping Theorem by letting w = akbk+k!.

Then y = ap for some nonzero p.

Let q = (k!/p) + 1 (i.e., pump in (k!/p) times).

Note that (k!/p) must be an integer because p < k.

The number of a’s in the new string is k + (k!/p)p = k + k!.

So the new string is ak+k!bk+k!, which has equal numbers of
a’s and b’s and so is not in L.

Using the Closure Properties
L = {aibj: i, j  0 and i  j}

An easier way:

If L is regular then so is L. Is it?

 L = anbn  {out of order}

 If L is regular, then so is L = L  a*b*

 = anbn

Using the Closure Properties
L = {aibjck: i, j, k ≥ 0 and (i  1 or j = k)}

Every string in L of length at least 1 is pumpable:

If i = 0 then: if j  0, let y be b; otherwise, let y be c. Pump in or
out. Then i will still be 0 and thus not equal to 1, so the resulting
string is in L.

If i = 1 then: let y be a. Pump in or out. Then i will no longer
equal 1, so the resulting string is in L.

If i = 2 then: let y be aa. Pump in or out. Then i cannot equal 1,
so the resulting string is in L.

If i > 2 then: let y = a. Pump out once or in any number of times.
Then i cannot equal 1, so the resulting string is in L.

Using the Closure Properties
L = {aibjck: i, j, k ≥ 0 and (i  1 or j = k)}

Suppose we guarantee that i = 1. If L is regular, then so is:

 L = L  ab*c*.

 L = {abjck : j, k ≥ 0 and j = k}

Use Pumping to show that L is not regular:

OR

If L is regular, then so is LR:

 LR = {ckbjai : i, j, k ≥ 0 and (i  1 or j = k)}

Use Pumping to show that L is not regular:

