Regular and Nonregular Languages

$a^{*} b^{*}$ is regular.
$\left\{a^{n} b^{n}: n \geq 0\right\}$ is not.
$\left\{w \in\{a, b\}^{*}\right.$: every a is immediately followed by $\left.b\right\}$ is regular.
$\left\{w \in\{a, b\}^{*}:\right.$ every a has a matching b somewhere $\}$ is not

Questions:

- Showing that a language is regular.
- Showing that a language is not regular.

Showing that a Language is Regular

Theorem: Every finite language is regular.

Proof: If L is the empty set, then it is defined by the regular expression \varnothing and so is regular. If it is any finite language composed of the strings $s_{1}, s_{2}, \ldots s_{n}$ for some positive integer n, then it is defined by the regular expression:

$$
s_{1} \cup s_{2} \cup \ldots \cup s_{n}
$$

So it too is regular.

Showing that a Language is Regular

Example:

Let $L=L_{1} \cap L_{2}$, where:

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{n}, n \geq 0\right\}, \text { and } \\
& L_{2}=\left\{b^{n} a^{n}, n \geq 0\right\}
\end{aligned}
$$

L_{1} and L_{2} are infinite however

$$
L=\{\varepsilon\} \text { is regular }
$$

Showing that a Language is Regular

1. Show that L is finite.
2. Exhibit an FSM for L.
3. Exhibit a regular expression for L.
4. Show that the number of equivalence classes of \approx_{L} is finite.
5. Exhibit a regular grammar for L.
6. Exploit the closure theorems

Closure Properties of Regular Languages

- Union
- Concatenation
- Kleene star
- Complement
- Intersection
- Difference
- Reverse
- Letter substitution

Letter Substitution

- Let Σ_{1} and Σ_{2} be alphabets.
- Let sub be any function from Σ_{1} to $\Sigma_{2}{ }^{*}$.

Example:

Let: $\quad \Sigma_{1}=\{a, b\}$,

$$
\Sigma_{2}=\{0,1\},
$$

$\operatorname{sub}(a)=0$, and
$\operatorname{sub}(\mathrm{b})=11$.

Letter Substitution

- letsub is a letter substitution function iff:
letsub $\left(L_{1}\right)=\left\{w \in \Sigma_{2}{ }^{*}: \exists \mathrm{y} \in L_{1}\right.$ and

$$
w=y \text { except that: }
$$

every character c of y is replaced by $\operatorname{sub}(c)\}$.

Example:

$$
\begin{aligned}
& \operatorname{sub}(a)=0, \text { and } \\
& \operatorname{sub}(b)=11 .
\end{aligned}
$$

Then letsub($\left.\left\{a^{m} b^{n}, n \geq 0\right\}\right)=0^{n} 1^{2 n}$

Showing that a Language is Not Regular

Every regular language can be accepted by some FSM.

It can only use a finite amount of memory to record essential properties.

Example:

$$
\left\{a^{m} b^{n}, n \geq 0\right\} \text { is not regular }
$$

Showing that a Language is Not Regular

The only way to generate/accept an infinite language with a finite description is to use:

Kleene star (in regular expressions), or
cycles (in automata).
This forces some kind of simple repetitive cycle within the strings.

Example:
ab*a generates aba, abba, abbba, abbbba, etc.

Example:
$\left\{a^{n}: n \geq 1\right.$ is a prime number $\}$ is not regular.

Exploiting the Repetitive Property

If an FSM with n states accepts any string of length $\geq n$, how many strings does it accept?
$L=$ bab*ab

$$
\frac{\mathrm{b} a}{x} \frac{\mathrm{~b}}{y} \frac{\mathrm{~b} \cdot \mathrm{~b} \mathrm{~b} a \mathrm{~b}}{z}
$$

$x y^{*} z$ must be in L.
So L includes: baab, babab, bab.bab, bab.b.b.b.b.b.b.bab

Theorem - Long Strings

Theorem: Let $M=(K, \Sigma, \delta, s, A)$ be any DFSM. If M accepts any string of length $|K|$ or greater, then that string will force M to visit some state more than once (thus traversing at least one loop).

Proof: M must start in one of its states. Each time it reads an input character, it visits some state. So, in processing a string of length n, M creates a total of $n+1$ state visits. If $n+1>|K|$, then, by the pigeonhole principle, some state must get more than one visit. So, if $n \geq|K|$, then M must visit at least one state more than once.

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is pumpable.

So, $\exists k \geq 1$
(\forall strings $w \in L$, where $|w| \geq k$

$$
\begin{aligned}
& (\exists x, y, z(w=x y z, \\
& |x y| \leq k \text {, } \\
& y \neq \varepsilon \text {, and } \\
& \left.\left.\left.\forall q \geq 0\left(x y^{q} z \text { is in } L\right)\right)\right)\right) \text {. }
\end{aligned}
$$

Example: $\left\{a^{n} b^{n}: n \geq 0\right\}$ is not Regular

If L were regular, then there would exist some k such that any string w where $|w| \geq k$ must satisfy the conditions of the theorem. Let $w=a^{[k / 2]} b^{[k / 2]}$. Since $|w| \geq k$, w must satisfy the conditions of the pumping theorem. So, for some x, y, and $z, w=x y z$, $|x y| \leq k, y \neq \varepsilon$, and $\forall q \geq 0, x y^{q} z$ is in L. We show that no such x, y, and z exist. There are 3 cases for where y could occur: We divide w into two regions:

aaaaa......aaaaaa	\mid b.b.b.b......b.b.b.b.b
1	\mid

So y can fall in:

- (1): $y=a^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $a^{k+p} b^{k}$. But this string is not in L, since it has more a's than b's.
- (2): $y=\mathrm{b}^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $a^{k} b^{k+p}$. But this string is not in L, since it has more b's than a's.
- (1, 2): $y=a^{p} b_{b}$ for some non-zero p and r. Let $q=2$. The resulting string will have interleaved a's and b's, and so is not in L.

There exists one long string in L for which no x, y, z exist. So L is not regular

Using the Pumping Theorem

If L is regular, then every "long" string in L is pumpable.
To show that L is not regular, we find one that isn't.
To use the Pumping Theorem to show that a language L is not regular, we must:

1. Choose a string w where $|w| \geq k$. Since we do not know what k is, we must state w in terms of k.
2. Divide the possibilities for y into a set of equivalence classes that can be considered together.
3. For each such class of possible y values where $|x y| \leq k$ and $y \neq \varepsilon$:

Choose a value for q such that $x y^{a} z$ is not in L.

Example: $L=\left\{a^{n}: n\right.$ is prime $\}$

Let $w=a^{j}$, where j is the smallest prime number $>k+1$.
$y=a^{p}$ for some p.
$\forall q \geq 0(a|x|+|z|+q|y|$ must be in $L)$. So $|x|+|z|+q \cdot|y|$ must be prime.
But suppose that $q=|x|+|z|$. Then:

$$
\begin{aligned}
|x|+|z|+q \cdot|y| & =|x|+|z|+(|x|+|z|) \cdot y \\
& =(|x|+|z|) \cdot(1+|y|),
\end{aligned}
$$

which is non-prime if both factors are greater than 1 :

$$
\begin{aligned}
& (|x|+|z|)>1 \text { because }|w|>k+1 \text { and }|y| \leq k . \\
& (1+|y|)>1 \text { because }|y|>0 .
\end{aligned}
$$

Using the Closure Properties

The two most useful ones are closure under:

Intersection

Complement

Using the Closure Properties

The two most useful ones are closure under: Intersection and Complement

Example:

$L=\left\{w \in\{a, b\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$

If L were regular, then:

$$
L^{\prime}=L \cap a^{*} b^{*}
$$

would also be regular. But it isn't.

Using the Closure Properties

$L=\left\{a a^{\prime} j: i, j \geq 0\right.$ and $\left.i \neq j\right\}$
Try to use the Pumping Theorem by letting $w=a^{k} b k+k!$.
Then $y=a^{p}$ for some nonzero p.
Let $q=(k!/ p)+1$ (i.e., pump in ($k!/ p$) times).
Note that ($k!/ p$) must be an integer because $p<k$.

The number of a 's in the new string is $k+(k!/ p) p=k+k!$.

So the new string is $a^{k+k \cdot[} \cdot b^{k+k!}$, which has equal numbers of a's and b's and so is not in L.

Using the Closure Properties

$L=\left\{a^{h} b^{\prime} i, j, j \geq 0\right.$ and $\left.i \neq j\right\}$
An easier way:

If L is regular then so is $\neg L$. Is it?

$$
\neg L=a^{n} b^{n} \cup\{\text { out of order }\}
$$

If $\neg L$ is regular, then so is $L^{\prime}=\neg L \cap a^{*} b^{*}$

$$
=a^{n} b^{n}
$$

Using the Closure Properties

$L=\left\{a^{b}{ }^{j} c^{k}: \quad i, j, k \geq 0\right.$ and $(i \neq 1$ or $\left.j=k)\right\}$
Every string in L of length at least 1 is pumpable:
If $i=0$ then: if $j \neq 0$, let y be b; otherwise, let y be c. Pump in or out. Then i will still be 0 and thus not equal to 1 , so the resulting string is in L.

If $i=1$ then: let y be a. Pump in or out. Then i will no longer equal 1 , so the resulting string is in L.

If $i=2$ then: let y be aa. Pump in or out. Then i cannot equal 1 , so the resulting string is in L.

If $i>2$ then: let $y=a$. Pump out once or in any number of times.
Then i cannot equal 1 , so the resulting string is in L.

Using the Closure Properties

$L=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right.$ and ($i \neq 1$ or $j=k$) $\}$
Suppose we guarantee that $i=1$. If L is regular, then so is:

$$
\begin{aligned}
L^{\prime} & =L \cap a \mathrm{ab}^{*} \mathrm{c}^{*} . \\
L^{\prime} & =\left\{\mathrm{ab} \mathrm{c}^{k}: j, k \geq 0 \text { and } j=k\right\}
\end{aligned}
$$

Use Pumping to show that L^{\prime} is not regular:
OR
If L is regular, then so is L^{R} :

$$
L^{\mathrm{R}}=\left\{\mathrm{c}^{k} \mathrm{~b}^{j} \mathrm{a}^{i}: i, j, k \geq 0 \text { and }(i \neq 1 \text { or } j=k)\right\}
$$

Use Pumping to show that L^{\prime} is not regular:

