
Regular and Nonregular Languages 

a*b* is regular.   

{anbn: n  0} is not. 

 

{w  {a, b}* : every a is immediately followed by b} is 

regular.   

 

{w  {a, b}* : every a has a matching b somewhere} is not 

 

Questions: 

    ● Showing that a language is regular. 

    ● Showing that a language is not regular. 



Showing that a Language is Regular  

Theorem: Every finite language is regular. 

 

Proof: If L is the empty set, then it is defined by the regular 

expression  and so is regular.  If it is any finite language 

composed of the strings s1, s2, … sn for some positive 

integer n, then it is defined by the regular expression: 

 

 s1  s2  …  sn  

 

So it too is regular.   



Showing that a Language is Regular  

Example: 

 

Let  L = L1  L2, where: 

  L1 = {anbn, n  0}, and  

  L2 = {bnan, n  0}  

            L1 and L2 are infinite however 

  L = {  }  is regular 



Showing that a Language is Regular  

1. Show that L is finite. 

 

2. Exhibit an FSM for L. 

 

3. Exhibit a regular expression for L. 

 

4. Show that the number of equivalence classes of L is  

    finite. 

 

5. Exhibit a regular grammar for L. 

 

6. Exploit the closure theorems 



Closure Properties of Regular 

Languages  
 ● Union 

 

 ● Concatenation 

 

 ● Kleene star 

 

 ● Complement 

 

 ● Intersection 

 

 ● Difference 

 

 ● Reverse 

 

 ● Letter substitution  



Letter Substitution 

 ● Let 1 and 2 be alphabets.  

 

● Let sub be any function from 1 to 2*.   

 

Example: 

 

Let:  1 = {a, b},   

  2 = {0, 1},  

 

  sub(a) = 0, and  

  sub(b) = 11.   



Letter Substitution 

 ● letsub is a letter substitution function iff:  

 

 letsub(L1) = {w  2* : y  L1 and  

      w = y except that: 

              every character  c           of y  

    is replaced by    sub(c)}.   

 

Example: 

 

  sub(a) = 0, and  

  sub(b) = 11.   

 

Then letsub({anbn, n  0}) = 0n12n 



Showing that a Language is Not 

Regular  
 Every regular language can be accepted by some FSM. 

 

It can only use a finite amount of memory to record 

essential properties. 

 

 Example: 

  {anbn, n  0} is not regular 



Showing that a Language is Not 

Regular  
The only way to generate/accept an infinite language with a finite 
description is to use:  

Kleene star (in regular expressions), or  

cycles (in automata).   

 

This forces some kind of simple repetitive cycle within the 
strings. 

  

Example: 

 ab*a generates aba, abba, abbba, abbbba, etc. 

  

Example: 

 {an : n  1 is a prime number} is not regular.  



Exploiting the Repetitive Property  

If an FSM with n states accepts any string of length  n, how 
many strings does it accept? 
 

L = bab*ab 
             

 b a b b b b a b 

   x      y        z 
 

xy*z must be in L. 
 

So L includes: baab, babab, babbab, babbbbbbbbbbab  



Theorem – Long Strings  

Theorem: Let M = (K, , , s, A) be any DFSM.  If M 

accepts any string of length |K| or greater, then that string 

will force M to visit some state more than once (thus 

traversing at least one loop).   

 

Proof:  M must start in one of its states.  Each time it reads 

an input character, it visits some state.  So, in processing a 

string of length n, M creates a total of n + 1 state visits.  If 

n+1 > |K|, then, by the pigeonhole principle, some state 

must get more than one visit.  So, if n  |K|, then M must 

visit at least one state more than once.   



The Pumping Theorem for Regular 

Languages  

If L is regular, then every long string in L is pumpable.   

 

So, k  1     

 

 ( strings w  L, where |w|  k 

 

         ( x, y, z (w = xyz, 

     |xy|  k,  

     y  , and 

     q  0 (xyqz is in L)))). 



Example: {anbn: n  0} is not Regular 
If L were regular, then there would exist some k such that any string w where |w|  k 
must satisfy the conditions of the theorem.  Let w = ak/2bk/2.  Since |w|  k, w must 
satisfy the conditions of the pumping theorem.  So, for some x, y, and z, w = xyz, 
|xy|  k, y  , and q  0, xyqz is in L.  We show that no such x, y, and z exist.  
There are 3 cases for where y could occur:  We divide w into two regions: 
 

         aaaaa…..aaaaaa | bbbbb…..bbbbbb 

          1             |              2                 
 

So y can fall in: 

    ● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.   

       The resulting string is ak+pbk.   But this string is not in L, since it has  

       more a’s than b’s.     

    ● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.   

       The resulting string is akbk+p.   But this string is not in L, since it has  

       more b’s than a’s.   

    ● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting  

       string will have interleaved a’s and b’s, and so is not in L. 
 

There exists one long string in L for which no x, y, z exist.  So L is not regular 



Using the Pumping Theorem  
If L is regular, then every “long” string in L is pumpable. 

 

To show that L is not regular, we find one that isn’t. 

 

To use the Pumping Theorem to show that a language L is not 
regular, we must: 

 

1. Choose a string w where |w|  k.  Since we do not know  

    what k is, we must state w in terms of k. 

2. Divide the possibilities for y into a set of equivalence  

    classes that can be considered together.  

3. For each such class of possible y values where |xy|  k  

    and y  : 

     Choose a value for q such that xyqz is not in L.  



Example: L = {an: n is prime} 
Let w = aj, where j is the smallest prime number > k+1.   

 

y = ap for some p.   

 

q  0 (a|x| + |z| +q|y| must be in L).  So |x| + |z| +q|y| must be prime. 

 

But suppose that q = |x| + |z|.  Then:        

 

 |x| + |z| +q|y|  = |x| + |z| + (|x| + |z|)y 

   = (|x| + |z|)(1 + |y|),  

 

which is non-prime if both factors are greater than 1:   

 

 (|x| + |z|) > 1 because |w| > k+1 and |y|  k.   

 (1 + |y|) > 1 because |y| > 0.   



Using the Closure Properties  
The two most useful ones are closure under: 

 

Intersection 

 

Complement 



Using the Closure Properties  
The two most useful ones are closure under: 

Intersection  and Complement 

 

Example: 

L = {w  {a, b}*: #a(w) = #b(w)} 

 

If L were regular, then: 

 

 L = L  a*b*       

 

would also be regular.  But it isn’t. 

 



Using the Closure Properties  
L = {aibj: i, j  0 and i  j}  

Try to use the Pumping Theorem by letting w = akbk+k!.   

Then y = ap for some nonzero p.   

Let q = (k!/p) + 1 (i.e., pump in (k!/p) times).   

Note that (k!/p) must be an integer because p < k.   

 

The number of a’s in the new string is k + (k!/p)p = k + k!.   

 

So the new string is ak+k!bk+k!, which has equal numbers of 
a’s and b’s and so is not in L.  

 



Using the Closure Properties  
L = {aibj: i, j  0 and i  j}  

An easier way:   

 

If L is regular then so is L.  Is it? 

 

 L = anbn  {out of order} 

 

        If L is regular, then so is L  = L   a*b* 

        = anbn 



Using the Closure Properties  
L = {aibjck:  i, j, k ≥ 0 and (i  1 or j = k)}  

Every string in L of length at least 1 is pumpable: 
 

If i = 0 then: if j  0, let y be b; otherwise, let y be c.  Pump in or 
out.  Then i will still be 0 and thus not equal to 1, so the resulting 
string is in L.   

 

If i = 1 then: let y be a.  Pump in or out.  Then i will no longer 
equal 1, so the resulting string is in L.  

  

If i = 2 then: let y be aa.  Pump in or out.  Then i cannot equal 1, 
so the resulting string is in L.   

 

If i > 2 then: let y = a.  Pump out once or in any number of times.  
Then i cannot equal 1, so the resulting string is in L.  



Using the Closure Properties  
L = {aibjck:  i, j, k ≥ 0 and (i  1 or j = k)}  

Suppose we guarantee that i = 1.  If L is regular, then so is: 

 L = L  ab*c*.   

 L = {abjck : j, k ≥ 0 and j = k}  

Use Pumping to show that L is not regular: 

OR 

If L is regular, then so is LR: 

 LR = {ckbjai : i, j, k ≥ 0 and (i  1 or j = k)}   

Use Pumping to show that L is not regular: 

 


