Regular Grammars

Chapter 7

Regular Grammars

A regular grammar G is a quadruple (V, Σ , R, S), where:

- V is the rule alphabet, which contains nonterminals and terminals,
- Σ (the set of terminals) is a subset of *V*,
- *R* (the set of rules) is a finite set of rules of the form:

$$X \rightarrow Y$$
,

• S (the start symbol) is a nonterminal.

Regular Grammars

In a regular grammar, all rules in *R* must:

- have a left hand side that is a single nonterminal
- have a right hand side that is:
 - ɛ, or
 - a single terminal, or
 - a single terminal followed by a single nonterminal.

Legal:
$$S \rightarrow a, S \rightarrow \varepsilon, and T \rightarrow aS$$

Not legal: $S \rightarrow a Sa$ and $a Sa \rightarrow T$

Regular Grammar Example

 $L = \{w \in \{a, b\}^* : |w| \text{ is even}\} \quad ((aa) \cup (ab) \cup (ba) \cup (bb))^*$

Regular Grammar Example

 $L = \{w \in \{a, b\}^* : |w| \text{ is even}\} \quad ((aa) \cup (ab) \cup (ba) \cup (bb))^*$

 $S \rightarrow \varepsilon$ $S \rightarrow aT$ $S \rightarrow bT$ $T \rightarrow a$ $T \rightarrow b$ $T \rightarrow aS$ $T \rightarrow bS$

Regular Languages and Regular Grammars

Theorem: The class of languages that can be defined with regular grammars is exactly the regular languages.

Proof: By two constructions.

Regular Languages and Regular Grammars

Regular grammar \rightarrow FSM:

 $grammartofsm(G = (V, \Sigma, R, S)) =$

- 1. Create in M a separate state for each nonterminal in V.
- 2. Start state is the state corresponding to S.
- 3. If there are any rules in *R* of the form $X \rightarrow w$, for some $w \in \Sigma$, create a new state labeled #.
- 4. For each rule of the form $X \rightarrow w Y$, add a transition from *X* to *Y* labeled *w*.
- 5. For each rule of the form $X \rightarrow w$, add a transition from X to # labeled w.
- 6. For each rule of the form $X \rightarrow \varepsilon$, mark state X as accepting.
- 7. Mark state # as accepting.

FSM → *Regular grammar:* Similarly.

Example 1 - Even Length Strings

- $S \rightarrow \varepsilon$ $S \rightarrow aT$ $S \rightarrow bT$
- $T \rightarrow a$ $T \rightarrow b$ $T \rightarrow aS$ $T \rightarrow bS$

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

 $S \rightarrow aS$ $S \rightarrow bS$ $S \rightarrow aB$ $B \rightarrow aC$ $C \rightarrow aD$ $D \rightarrow a$

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

 $S \rightarrow aS$ $S \rightarrow bS$ $S \rightarrow aB$ $B \rightarrow aC$ $C \rightarrow aD$ $D \rightarrow a$

Example 2 – One Character Missing

 $S \rightarrow \varepsilon$ $S \rightarrow aB$ $S \rightarrow aC$ $S \rightarrow bA$ $S \rightarrow bC$ $S \rightarrow cA$ $S \rightarrow cB$

- $A \rightarrow bA$ $A \rightarrow cA$ $A \rightarrow \epsilon$ $B \rightarrow aB$ $B \rightarrow cB$ $B \rightarrow \epsilon$
- $C \rightarrow aC$ $C \rightarrow bC$ $C \rightarrow \varepsilon$

