Problem 2. We provide a context-free grammar \(G \) with \(L(G) = L \).

Since \(L \) is closed under "U", we consider the following two cases: when \(|u| \neq |v| \) and when \(|u| = |v| \).

Case when \(|u| \neq |v| \):

Use a variable \(T \) to generate an arbitrary string of equal-length sides (with a variable \(X \) generating a single arbitrary symbol), and then, use another variable \(U \) to generate an arbitrary string \(u \) of length \(\leq 1 \) and concatenate this string to either the beginning \((|u|> |v|)\) or the end \((|u|< |v|)\) of the string generated by \(X \).

\[
S_1 \rightarrow TU \mid UT \\
T \rightarrow XTX \mid \varepsilon \\
U \rightarrow XU \mid X \\
X \rightarrow 0 \mid 1
\]

Case when \(|u| = |v| \): With the idea learned in lecture "mismatched",

At corresponding positions

\[
\begin{array}{cccccccc}
\text{\\text{U}} & \text{\\text{}} \\
\text{\text{A}} & \text{\text{}} \\
\text{\text{B}} & \text{\text{}} \\
\end{array}
\]

Use two variables \(A \) and \(B \):

Variable \(A \) generates an equal number of symbols on either side of itself and then becomes "\(\varepsilon \)"

Similarly, for variable \(B \) - with a basis of becoming "\(\varepsilon \)"

So, now,

\[
S_2 \rightarrow AB \mid BA
\]

The production rules for \(A \) and \(B \) are similar to those for the variable \(T \) above.
Problem 3. Idea: Construct a pushdown automaton so that if the input \(w \) satisfies \(2 \#_a(w) = 3 \#_b(w) \), the PDA will reject it. Otherwise, it will accept \(w \). The PDA will use its stack to keep track of how many 'a's or 'b's are "in extra" (for \(2 \#_a(w) \) to match with \(3 \#_b(w) \)).

To do so, the PDA assigns each 'a' to be worth 2 units, and each 'b' to be worth -3 units, and the stack keeps track of the "net total" as it processes the input string.

Check that \(w \) is accepted only if the net total after processing \(w \) is not a unit.

Problem 5
(a) \(L \) is not a CFL.

Suppose the contrary that \(L \) was CFL.

Let \(n \) be the pumping lemma constant.

Consider \(z = 0^{2n} \ 0^n \ 1^n \ 0^{2n} \in L \) with \(121 \geq n \).

Consider all possible \(u, v, w, x, y \in \{0, 1\}^* \) such that \(z = uvwxy \)

such that

\[|vwx| \leq n \]

\[|v| \geq 1. \]
There are only three cases to consider:

Case 1: when \(v \cdot w \) contains only Os and some Os are chosen from the last \(0^{2n} \) of \(z \).

Let \(i \) be an integer with \(7n > 1 \cdot v \cdot w \cdot (i+1) \geq 6n \). Then, either the length of \(u \cdot w \cdot x \cdot y \cdot z \) is not a multiple of 3, or the string is of the form \(u \cdot u \cdot w \) such that \(|u| = |w| = |x| = 1 \). Hence, \(u \cdot u \cdot w \) consisting of all Os and hence \(u \cdot w \) consisting of not all Os \(\Rightarrow w \neq u \).

Case 2: when \(v \cdot w \) does not contain any Os in the last \(0^{2n} \) of \(z \).

Then, either the length of \(u \cdot w \cdot x \cdot y \cdot z \) is not a multiple of 3, or the string is of the form \(u \cdot w \) such that \(|u| = |w| = 1 \). Hence, \(u \cdot w \) consisting of all Os and hence \(w \neq u \).

Case 3: when \(v \cdot w \) is not all Os and some Os are chosen from the last \(0^{2n} \) of \(z \).

As \(1 \cdot v \cdot w \cdot 1 \leq n \), \(v \cdot w \cdot x \) in this case must be a substring in \(1^{2n} \). Then, either the length of \(u \cdot w \cdot x \cdot y \cdot z \) is not a multiple of 3, or the string is of the form \(u \cdot w \) such that \(|u| = |w| = 1 \). Hence, \(u \cdot w \) consisting of not all Os \(\Rightarrow w \neq u \).
(b) \(L_2 \) is not CF.

Suppose \(L_2 \) were CF.

Let \(n > 0 \) be the pumping lemma constant.

Consider \(z = 1^n 0^n 1^n \in L_2 \) with \(|z| \geq n \).

Consider all possible \(u, v, w, x, y \in \{0, 1\}^* \) with \(z = uvwx \)

\[1 \leq |vwx| \leq n \]
\[|vx| \geq 1 \] .

Notice that \(u \) and \(v \) should not contain both 0 and 1, otherwise "pumping up" would be inconsistent with the ordering of the string \((u \# 0^n 1^n u \#)\). Consequently, \(v, x \in \{0^n 1^n\}^* \).

Clearly, \(u \) and \(x \) can not both be in \(0^* \),

otherwise, only the make \(y \) of Os would be affected by pumping the string and the arithmetical relation between the numbers of Os and 1s would be violated.

Hence, there are only two major cases to consider:

Case when \((v \in \{0^* \} \& x \in \{1^* \})\) or \((v \in \{0^* \} \& x \in \{1^* \})\).

Consider the former subcase as the latter one can be proved with similar arguments.

If \(v \in \{0^* \} \& x \in \{1^* \} \), then the pumped string would be \(uv^n w^n x^k = 1^n 0^i 1^n + (k-1) 1^n v^n 1^n - x^n (0^n 1^n)^k \).

We can check that the only choice of \(i, k \)

\[1 \leq k \leq |x| > 0 \text{ so that } v^n w^n x^k \]

\[k \geq 0 \text{ } (n-1)v^{(k-1)} v^n (n-1)1^{(k-1)} 1^n = n^2 \]

\[1 \leq |v|= |x| > 0 \text{ , a contradiction.} \]
Case when \(r, t \in 1^* \).

In such case \(r \) should be a subset of the first sequence \(1 \). \(t \) is the second one.

Otherwise, the condition \(|vwxy| \leq n \) would not be satisfied. That is,

\[
\underbrace{11 \ldots 11}_{\text{\(n \) times}} \underbrace{11 \ldots 11}_{\text{\(n \) times}} \underbrace{00 \ldots 00}_{\text{\(n \) times}} 11 \ldots 11 \ldots 11
\]

Again, if we pump \(r \) at \(z \), we have

\[
u^k\overline{vwz^2}y = 1^n-1v^l+(k^l+1)v^l 0^n 1^{n^2-(k^l+1)}z^l,
\]

or the only feasible values for \(1v^l \) and \(1z^l \geq 0 \) for any choice of \(k \geq 0 \) are \(v^l = z^l = 0 \),

again a contradiction.

(c) \(L_3 \) is CF.

Idea: View any string in \(L_3 \) as concatenation of five substrings: \(AWBWC \), where

\(W \) is the reversal of \(W \), \(A \) can be any string in \(\{a, b, \#\}^* \) ending with \(\# \) or just \(\varepsilon \).

Similarly, \(C \) can be any string in \(\{a, b, \#\}^* \) starting with \(\# \) or just \(\varepsilon \). The "center" \(B \) can be any string starting or ending with \(\# \) or \(a \) or \(b \) or \(\varepsilon \), where the latter three cases correspond to the case where \(i = j \) (\(\alpha_i = \alpha_j \)).

Can you construct the underlying CFG?
Problem 7.

Non-shrinkable is Turing-decidable.

Construct a Turing machine \(M \) that decides Non-shrinkable as follows.

On input \(R \) of \(M \):
1. Check if \(R \) is a valid regular expression:
 - "true": go to step 2,
 - "false": \(M \) halts and rejects \(R \)
2. \(M \) constructs a DFA \(D \) for the language \(L(R) \) (run NFA and DFA in text or lecture notes)
3. \(M \) runs a depth-first search starting from \(q_{start} \) of \(D \), and removes all states in \(D \) that are not reachable from \(q_{start} \) from \(D \).
4. \(M \) for each accepting state \(q \) in \(D \), runs a depth-first search starting from \(q \) and check if another accepting state (not equal to \(q \)) is reachable from \(q \), or if there is a loop from \(q \) to itself.
 - If any such paths or loops are found,
 - \(M \) halts and rejects \(R \).
 - Otherwise, \(M \) halts and accepts \(R \).

Note: It is first required to remove all the states (actually, just accepting states) not reachable from \(q_{start} \), since these states cannot lead to any
Problem 8
Non-Empty is Turing-recognizable.

We proceed as in the construction of an equivalent TM N from a given TM M:

On input w to N:
1. Check if w is of the form $\langle M \rangle$ for some TM M:
 "true": go to step 2
 "false": N halts and rejects w
2. loop for $i = 1, 2, \ldots$
 N simulates M on all strings of length at most i for i steps (for each such string)
 if M accepts some string,
 then N halts and accepts w
 end loop

Note: If $L(M) \neq \emptyset$, we can see that for some i, N will halt and accept its input.
Problem 9.
(a) Suppose that L were Turing-decidable. We can construct an “algorithm” for deciding Halt_{TM} — which will be a contradiction.

Given an input $<M, w>$, we want to decide if M halts on w. We first construct a TM N, which just ignores its input and simulates M on w. Hence, N will halt on E if and only if M halts on w.

Let n be the number of states in N. We can now test if N halts on E as follows:

$k := 1$;

while (true) loop
 if $(n, k) \in L$
 break
 else
 $k := k + 1$

end loop;

run N on E for k steps

halt and accept if N halts in at most k steps
else reject

Since the number of n-state TMs is finite, there must be some maximum k such that all such TMs either halt in k steps or run forever.
The above algorithm first finds this k, and then simply checks if N halts in k steps.
(b) We show that \(L \) is Turing-recognizable.

Since \(L \) is not Turing-decidable, this implies that \(L \) cannot be Turing-recognizable.

\[
L = \{ (n, m) \mid \text{some } n \text{-state TMs halt on } \varepsilon \text{ after more than } m \text{ steps} \}
\]

Since there are only a finite number of TMs with \(n \) states, we can simulate all of them in parallel on \(\varepsilon \).

If \((n, m) \in L \) then at least one of the TMs will halt after more than \(m \) steps, and we will halt and accept.