Problem.

(a) The given method does not provide a valid definition to extend ε to $\varepsilon: Q \times S^* \rightarrow Q$.

Basis: $\forall q \in Q$, $\varepsilon(q, \varepsilon)$ is defined.

Induction: Invalid - can not reach a basis as mentioned in class.

What is $\varepsilon(q, a)$ for $q \in Q$ and $a \in \Sigma$?

$\varepsilon(q, a) = \varepsilon(q, \varepsilon a) = \varepsilon(\varepsilon(q, \varepsilon a), a) = \varepsilon(q, a) !$

(b) The given method provides a valid definition to extend ε to $\varepsilon: Q \times S^* \rightarrow Q$ via induction on its 2nd argument - you may check its basis and induction do give rise to a well-defined function ε on $Q \times S^*$.

Denote this function by δ: $Q \times \Sigma \rightarrow Q$ as its extension (following the method) $\delta_i: Q \times S_i^* \rightarrow Q$.

We show that δ (the extension, ε defined in lectures) and δ_i agree on $Q \times S_i^*$ (equal as functions: $Q \times S_i^* \rightarrow Q$),

i.e., $\forall q \in Q \forall x \in S_i^* \delta(q, x) = \delta_i(q, x)$.

i.e., $\forall q \in Q \forall x \in S_i^*$ $\exists (q, x)$.

Proof:
We prove the statement above, \(\forall n \geq 0 \) \(P(n) \), by

induction on \(n \) (effectively, induction on \(1 \times 1 \)).

Base \(n = 0 \): Prove \(P(0) \), i.e., \(\forall x \in \mathbb{E} \, \forall q \in \mathcal{Q} \)

\[
\delta_{0}(q,x) = \delta(q,x)
\]

When \(n = 1 \), \(\forall q \in \mathcal{Q} \),

\[
\delta_{1}(q,x) = \begin{cases}
3(q,x) = 3 & \text{by the basis of \(\delta \)} \\
\varepsilon_{1}(q,x) = 3 & \text{their inductive definition of \(\delta \) and \(\varepsilon \)}
\end{cases}
\]

Induction step: Prove \(\forall n \geq 0 \) \(P(n) \land P(n+1) \Rightarrow P(n+1) \).

Let \(n \geq 0 \) be arbitrary.

Assume \(P(n) \land P(n+1) \).

Induction hypothesis.

We prove \(P(n+1) \), i.e., \(\forall x \in \mathbb{E} \, \forall q \in \mathcal{Q} \)

\[
\delta_{n+1}(q,x) = \delta_{n+1}(q,x)
\]

Let \(x \in \mathbb{E} \) be arbitrary, and consider another \(q \in \mathcal{Q} \).

We recall \(x = ay \) for some \(a \in \mathbb{E} \) and \(y \in \mathbb{E}^{+} \), then

\[
\delta_{n}(q,x) = \delta_{n}(q,ay)
\]

\[
= \delta_{n}(\delta(q,a),y) \quad \text{inductive definition of} \ \delta_{n}
\]

\[
= \delta_{n}(\varepsilon(q,a),y) \quad \text{by induction hypothesis} \ P(n)
\]

\[
= \delta_{n}(\varepsilon(q,a),y)
\]

Check this equality via the (inductive) definition of \(\delta_{n} \) and \(\varepsilon \) with the steps of \(\delta(q,a) \).
\[\frac{\hat{\delta}(\hat{\delta}(q, a), y)}{\hat{\delta}(q, a), y} \]

check this equality via the inductive definition of \(\hat{\delta} \)

\[\frac{\hat{\delta}(\hat{\delta}(q, y), a, y)}{\hat{\delta}(q, y), a, y} \]

check this equality via the inductive definition of \(\hat{\delta} \)

\[\frac{\hat{\delta}(\hat{\delta}(q, a), y)}{\hat{\delta}(q, a), y} \]

\[\hat{\delta}(q, ay) = \hat{\delta}(q, x) \]

\[\frac{\text{this equality requires a proof}}{\text{the property of } \hat{\delta}} \]

\[\forall u, v \in \Sigma, a \in Q, q \in \Sigma^* \]

\[\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v) \]

by an induction on \(|v| \).

\[\text{Note: Every step in above derivation is necessary!} \]

This completes the inductive step.

Combining the base and induction step, we prove

\[\hat{\delta}(q, z) \in \Pi \]

by induction.
(c) Idea:

The basis of the "method" yields a basis for the extended extension.

But can the "method" provide a valid definition to extend \leq to \leq^*: $xy \leq^* \rightarrow \phi$?

The given inductive definition is in an unusual form:

$$\forall q \in \phi \forall x, y \in \Sigma^* \exists f(q, xy) = \phi(f(q, y)).$$

1. Does (1) give a well-defined function for f?

For $x, y \in \Sigma^*$, $|xy| > 1$,

clearly $\exists w \in \Sigma^*$ other than x, y such that $xy = wz$.

We question if the definition in (1) is dependent on the choice of $x, y \in \Sigma^*$, that is, if for some such x, y, w, z with $xy = wz$, but $f(f(q, x), y) \neq f(f(q, w), z)$ then the definition in (1) would not be a valid definition because it would give different answers for $f(q, xy)$ and $f(q, wz)$, and they are supposed to be the same.

However, you can show that this cannot happen, and this definition is valid.
Problem 3. For all positive integers \(p \geq 3 \), we denote by \(<x> \) the integer corresponding to the string \(x \in \{0,1,\ldots,p-1\}^* \).

For all positive integers \(k \geq 1 \), note that for all \(x \in \{0,1,\ldots,p-1\}^* \) and \(a \in \{0,1,\ldots,p-1\} \),
\[
<x>a = p<x> + a \quad (a \text{ integer}).
\]

Hence,
\[
<x>a \mod k = (p<x> + a) \mod k
\]
\[
= \left\lfloor p \left(<x> \mod \frac{k}{2} \right) + a \right\rfloor \mod k.
\]

This suggests that we can use the states of a deterministic finite automaton DFA \(M \) to remember the mod-\(k \) remainder of \(<x> \) for consumed input \(x \).

The following DFA \(M = (Q, \Sigma, \delta, q_0, A) \) accepts no language \(L_{3,2} \) for \(p = 2 \) and \(k = 3 \). Can you generalize the construction for arbitrary \(k \geq 1 \) and \(p \geq 2 \)?

\[Q = \{ q_0, q_1, q_2 \}, \quad \Sigma = \{0,1,3 \} \]

\[\delta : Q \times \Sigma \to Q \] is defined as:
\[
\delta(q_i, a) = q_{(2i+a) \mod 3} \quad \text{for} \quad i \in \{0,1,2\},
\]

and \(A = \{ q_0 \} \)

\[M : \]
\[
\begin{array}{ccccccc}
\quad & \quad & \quad & \quad & \quad & \quad & \quad \\
\quad & 1 \quad & \quad & \quad & \quad & \quad & \quad \\
\quad & \quad & \quad & \quad & \quad & \quad & \quad \\
\quad & \quad & \quad & \quad & \quad & \quad & \quad \\
\quad & \quad & \quad & \quad & \quad & \quad & \quad \\
\quad & \quad & \quad & \quad & \quad & \quad & \quad \\
\end{array}
\]

\[
L(M) = L_{3,2} \quad (\text{generalize the construction}) \quad \text{for} \quad L_{k, p}.
\]
The proof of Theorem 3 follows from Proposition 3 (i.e., $L(M) = L(N)$).

We can set up an induction argument (or proof).

Similar to the one in Lecture 4, the one in Problem 2 (b).
Problem 4.
Since \(L \) is regular, we get \(L = L(M) \) for some deterministic finite automaton \(M = (Q, \Sigma, \delta, q_0, F) \).

We construct a nondeterministic finite automaton \(N = (Q', \Sigma, \delta', q_0', F') \) that accepts \(K \) (hence, \(K \) is regular).

The idea of constructing such \(N \) is as follows:

- \(N \) starts in the state \((0, q_0)\) and simulates \(M \) for some number of steps.

At some point, which is nondeterministically chosen, \(N \) allows an \(\varepsilon \)-transition from a state of the form \((0, q)\) to either the state \((1, \varepsilon(q, 0))\) or \((1, \varepsilon(q, 1))\) before guessing \(a \) or \(b \) (guessing \(a \)).

Intuitively, \(N \) is consuming no symbol from its input (while "hypothesizing" that \(M \) has consumed some symbol \(a \) (which is either 0 or 1). Then \(N \) simply continues simulating \(M \) on the remainder of the input string.

Also, there is no \(\varepsilon \)-transition leading out of the states of the form \((L, q)\).
The 5-tuple definition of \mathbf{N}_5:

$\mathcal{O}_2 = \{0, 13 \times 0\}$

$\mathcal{O}_2 = (0, 9_0)$

$\delta_{2}: \mathcal{O}_2 \times \Sigma \rightarrow \mathcal{P}(\mathcal{O}_2)$ is defined as:

$\forall q \in \mathcal{O}_2 \forall a \in \Sigma : \delta_{2}(0, q, a) = \{(0, s(q, a))\}$

$\forall q \in \mathcal{O}_2 \forall a \in \Sigma : \delta_{2}(0, q, a) = \{(1, 5(q, 0))\}$

$\forall q \in \mathcal{O}_2 \forall a \in \Sigma : \delta_{2}(1, q, a) = \{(1, 8(q))\}$

$\forall q \in \mathcal{O}_2 \delta_{2}(1, q, \varepsilon) = \emptyset$
Problem 5. For each positive integer \(n \geq 1 \), consider the language \(L_n = \{ \sum 1^{n-2i} \} \) over the alphabet \(\Sigma = \{0, 1, 2\} \).

A deterministic finite automaton with \(n \) states — states 0, 1, \ldots, \(n-2 \) for counting the number \(1 \)'s encountered so far, and an additional state 9, into which it enters so soon seeing \(2 \)’s

a 0 or more than \(n-2 \) 1’s, is a DFA with \(n \) states that accepts \(L_n \).

On the other hand, any two strings of the form \(1^i \cdot 1^j \) for \(0 \leq i < j \leq n-1 \) are "distinguished" by \(1^{n-2-i} \).

any DFA must have at least \(n \) states.

Follow a similar argument (applying Pumping Principle) in class to show non-regularity of a language.