1. [20 points] Prove or disprove each of the following statements.

(a) [5 points] Let M_1 be a nondeterministic finite automaton without ϵ-transitions, and all of the states of M_1 are reachable from its start state. Construct the equivalent deterministic finite automaton M_2 ($L(M_2) = L(M_1)$) via the Subset Construction, and M_2 contains only states reachable from its start state.

Then M_2 must have at least as many states as M_1.
(b) [5 points] Let M_1 be an n-state nondeterministic finite automaton without ϵ-transitions, and M_1 does not have more than one transition from any state on the same symbol. Then there exists an equivalent deterministic finite automaton M_2 ($L(M_2) = L(M_1)$) with exactly $n + 1$ states.
(c) [5 points] Let M be a pushdown automaton such that it never, when reading any input string, can have more than three total stack symbols in its stack (that is, stack-height is at most three).

Then the language $L(M)$ is regular.
(d) [5 points] The following language L:

$$L = \{x \in \{a, b, c\}^* \mid \#_a(x) = \#_b(x) + \#_c(x)\}$$

(where $\#_u(w)$ denotes the number of occurrences of the symbol u in the string w) is context-free.
2. [15 points] Let the alphabet $\Sigma = \{E, S, W, N\}$ represent the one-unit movements of a particle to the East, South, West, or North direction, respectively.
The language R ("returning to origin") is the set of all strings over Σ such that if a particle follows the movement-symbols given by the string, on a large flat field, will return to the original starting position.

(a) [6 points] Prove or disprove that R is a regular language.
(b) [6 points] Prove or disprove that R is a context-free language.
(c) [3 points] Prove or disprove that R is the intersection of two context-free languages.
3. [20 points]

(a) [8 points] Consider the following language L:

$$L = \{ \langle T_1, T_2 \rangle \mid T_1 \text{ and } T_2 \text{ are deterministic Turing machines and there exists a string } x \text{ such that both } T_1 \text{ and } T_2 \text{ accept } x \text{ and } T_1 \text{ does so in fewer steps than does } T_2 \}. $$

Show that L is Turing-recognizable by constructing a Turing machine that recognizes L. Does your Turing machine halt on all inputs? Justify your answer.
(b) [8 points] Consider the following language \(\text{SUB}_{\text{CFG}, \text{DFA}} \):

\[
\text{SUB}_{\text{CFG}, \text{DFA}} = \{(G, M) \mid G \text{ is a context-free grammar and } M \text{ is a deterministic finite automaton such that } L(G) \subseteq L(M)\}.
\]

Prove that \(\text{SUB}_{\text{CFG}, \text{DFA}} \) is Turing-decidable by constructing a Turing machine that decides \(\text{SUB}_{\text{CFG}, \text{DFA}} \).
(c) [4 points] Prove or disprove that there exists a countably infinite family \(\{X_1, X_2, \ldots \} \) of countably infinite sets \(X_1, X_2, \ldots \) such that for all positive integers \(i \) and \(j \) with \(i \neq j \), the intersection \(X_i \cap X_j \) is a non-empty finite set.