Continuation of Context-Free Grammars (CFGs)

Example: CFG $G=\left(V, \Sigma, P, S \right)$

$$= \left(\{S\}, \{a,b\}, \{S \rightarrow e | aSb\}, S \right)$$

What is $L(G) = \{x \in \Sigma^* | S \Rightarrow^* x \}$?

Can formally prove what $L(G)$ is.

Informally (done in this course),
"guess" typical form(s) of $x \in \Sigma^*$
with $S \Rightarrow^* x$

Observe:

- $S \Rightarrow e$ (from $S \rightarrow e \in P$)
 $3 \in L(G)$
- $S \Rightarrow aSb$ (from $S \rightarrow aSb \in P$)
 $ab \in L(G)$
 $a^3b = aaabbb \in L(G)$

Similarly, $S \Rightarrow aSb$
- $\Rightarrow aaaSbb$
- $\Rightarrow aaasbbbbb$
- $\Rightarrow aaaaSb bbb$
- $\Rightarrow aaaaSb bbb$

In general, we can see that:
\[
\forall n \geq 0 \quad S \Rightarrow a^n b^n, \text{ i.e., } a^n b^n \in L(G)
\]

\[
\begin{align*}
S & \Rightarrow a S b \\
 & \Rightarrow a a S b b \\
 & \vdots \\
 & \Rightarrow a^n S b^n \\
 & \Rightarrow a^n b^n
\end{align*}
\]

This can convince us that

\[
\{a^i b^i \mid i \geq 0\} \subseteq L(G).
\]

Can you see that

\[
L(G) \subseteq \{a^i b^i \mid i \geq 0\}
\]

informally?

(Informally, argue that for all \(x \in \Sigma^*\),

if \(S \Rightarrow^* x\) then \(x\) must be of the form \(a^i b^i\)

for some \(i \geq 0\).)

- Exercise.

Recall that a language \(L\) is CF (a CFL)

if \(L = L(G)\) for some CFG \(G\).

For examples of languages \(L\) (context-free),

how do we find CFG \(G\) such that

\(L(G) = L\)?
Heuristics:

<table>
<thead>
<tr>
<th>Programs</th>
<th>Machines/FTNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables, identifiers</td>
<td>states</td>
</tr>
<tr>
<td>semantics</td>
<td>semantics</td>
</tr>
</tbody>
</table>

Regular expressions:
- Explore "recursive patterns" within typical strings for the language.
- Set up recursion relating all the patterns.

Grammars/LFGs:
- Explore "recursive patterns" within typical strings for the language.
- Set up production rules relating the variables.
Earlier, we studied two (known) non-regular languages:
\(\{a^i b^i | i \geq 0\} \)

Example 1:
This is CF

\[\{a^2 | i \geq 0\} \text{ non-regular integer squares} \]

but it is **NOT** CF
(studied later)

Example 2:
\[L = \{a^i b^i c^j d^j | i \geq 0, j = 23\} \text{ is context-free.} \]

Strings in \(L \):
- \(c^2 a^2 \)
- \(a b c a \)
- \(a^2 b^2 c^2 a^2 \)
- \(a^7 c^{102} a^{102} \)

Not in \(L \):
- \(e \)
- \(a^2 b^2 c a \)
- \(a^2 b^2 \)
- \(c a^2 a^2 b^2 \)
typical strings in L = \(S \) (the start variable)

\[
\begin{array}{ccc}
a_1 & b_2 & c_3 & a_4 \\
R & R & R & R
\end{array}
\]

same length (\(\geq 3 \))

lengths are "independent"

X \implies w \iff \(a_1 \) is of the form \(a_i^i b_i^i \) where \(i \geq 0 \)

Y \implies w \iff \(a_1 \) is of the form \(b_i^i c_i^i \) where \(i \geq 2 \)

So \(\text{L} \rightarrow XY \) a production rule.

What about production rules for \(X \) and \(Y \)?

Learn from Example 1: "Outside-In"

\[
a^i b^i : \quad \begin{array}{c}
\text{a} \\
\text{X} \\
\text{b}
\end{array}
\]

how to explore recursive pattern(s)?

\[
\begin{array}{c}
a \\
\text{X} \\
b
\end{array}
\]

What is left?

\[
a^{i-1} b^{i-1}
\]

also of the same form!

So \(X \rightarrow aXb \) is a production rule.
How do terminate a recursion?

Think of applying the recursions until we arrive at a "base" — no more recursion possible.

\[a \Delta a \quad b \Delta b \]

\[X \to axb | e \]

Similarly, \[Y \to cYa | ecaq \]

Notation: \[a^i b^j c^k d^l e^f \]

\[f \geq 2 \]

So, a desired CFG \(G = (V, \Sigma, P, S) \):

\[\Sigma = \{a, b, c, d\} \]

\[V = \{S, X, Y\} \]

\[P = \{ S \to XY, X \to axb | e \}

\[Y \to cYa | c^2a^2 \} \]

Semantics/interpretation of \(S, X, Y \):

\[X \Rightarrow^* w \text{ iff } w \text{ is a string from } a^i b^j \text{ when } i \geq 0 \]

\[Y \Rightarrow^* w \text{ iff } w \text{ is a string from } c^i a^j \text{ when } i \geq 2 \]

\[S \Rightarrow^* \text{ only if } w \in L \]

\[w \text{ is a string from } a^i b^j c^k d^l \text{ when } i \geq 0, j \geq 2 \]
Why/what is "context-free" in the definition?

1. In 1-step derivation:
 \[\alpha \stackrel{A \beta}{\longrightarrow} \alpha \delta \beta, \text{ if } A \rightarrow \delta \in P \]
 \[\alpha, \beta: \text{Context of } A \]
 "context-free": free to apply the production rule or rewriting rule \(A \rightarrow \delta \) regardless of the context of \(A \)

2. In the previous example:
 \[a^i b^i c^i d^i \]
 \[\text{context of } a \quad \text{context of } d \]

 Informally, CFGs generate CFLs that obey block-structured controls, disjoint or containment.

 \[\text{Languages} \]

Next example, "context":

\[\text{draw} \]
Example 3: \[L = \{ a^i b^j c^i d^j \mid i \geq 0, j \geq 1 \} \]

Strings in \(L \):
- \(bc \)
- \(b^3 c^3 \)
- \(a^2 b c d^2 \)
- \(a^3 b^3 c^3 d^3 \)

Not in \(L \):
- \(\varepsilon \)
- \(a b^2 c d^2 \)
- \(a b^5 c^2 d^2 \)
- \(a^2 b^4 c^6 d^2 \)

Typical strings in \(L \):
- Use start variable

<table>
<thead>
<tr>
<th>(a^i)</th>
<th>(b^k)</th>
<th>(c^j)</th>
<th>(d^l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^i)</td>
<td>(b^k)</td>
<td>(c^j)</td>
<td></td>
</tr>
</tbody>
</table>

Use variable for this type of strings:
\[X \Rightarrow W \text{ if } \text{ } W \text{ is of form } b^i c^i \text{ when } i \geq 1 \]

So: \(S \rightarrow a \text{ } S \text{ } d \text{ } \ldots \text{ more ?} \)
Again, learn from Example 1:

\[S \rightarrow aSd \quad \text{acting like the basis of the recursion} \quad S \rightarrow aSd \]

Then, with semantics: \(X \Rightarrow w \) if \(w = \text{at least } b^i c^j \text{ when } i \geq 1 \), we add:

\[X \rightarrow bXc \mid bc \]

so the basis is not \(E \).

So, what are the semantics of \(X \Rightarrow S \)?
What are the 4-tuples of a desired \(CFG \) ?

Example 3': \(L = \{ a^i b^i c^j a^i \mid i \geq 1 \land j \geq 1 \} \)

So, \(S \rightarrow aSa \mid X \) would not work.

\[X \rightarrow bXc \mid bc \]

Why?

How about at least one such matching pair!

\[S \rightarrow aS'a \]

\[S' \rightarrow aS'a \mid X \]

\[X \rightarrow bXc \mid bc \]
Sometimes, the contents are "hidden".

Example 4: \[L = \{ a^i b^j c^k \mid i, j, k \geq 0 \} \]

Strings in \(L \):
- \(e \)
- \(a \)
- \(a^2 b c \)
- \(a^3 c^3 \)

Not in \(L \):
- \(a b c \)
- \(b c^2 \)

Typical string: \(s \)

\[
\begin{array}{ccc}
\text{as} & \text{bs} & \text{cs} \\
\hline
\text{viewed as} & \text{as} & \text{bs} & \text{cs} \\
\end{array}
\]

This length = sum of these two lengths.

<table>
<thead>
<tr>
<th>Same length</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>So these two lengths are the same</td>
<td></td>
</tr>
</tbody>
</table>

Same idea used previously:

\[S \rightarrow aSc \mid X \]
\[X \rightarrow axb \mid e \]

Semantics of \(X \) and \(S \)?
Example 5: \(L = \{ a^i b^j \mid 1 \leq i < j \} \)

Typical strings: \(a^s \) \(b^s \)

Viewed as:

- Same length
- \(S \) \(\times \) \(B \)

\[S \rightarrow \times B \]
\[X \rightarrow a^x b^x \mid \epsilon \]
\[B \rightarrow B b \mid b \]

\[B \Rightarrow w \text{ iff } \frac{w}{a} \text{ is a } \lambda \text{ word form } B \text{ when } x = 1 \]

Example 6: \(L = \{ 0^x 1^{2x} \mid x \geq 1 \} \)

Typical string:

Viewed as:

- Same length
- \(S \) \(\times \) \(1s \)

So:

\[S \rightarrow \times Y \]
\[X \Rightarrow w \text{ iff } w = 0^w 1^w \]

What about \(Y \)?

- \(Y \) cannot use "\(Y \) itself"
- Or "production rule" to remember the number of \(X \)-productions
- Is used in generating deriving \(a^i b^i \)
Does it mean that L is not CF?

Not necessarily.

Typical string(s):

$0^s \rightarrow 1^s$
$0 \rightarrow 0S11 \rightarrow \varepsilon$

See the recursion? If the original string is $0^s 1^s$ and $0^s 1^s \rightarrow 0^x 1^{s-x}$, then the string is of the form $0^x 1^{s-x}$ where $s-x = \frac{1}{2}(s-1)$.

So: $S \rightarrow 0S11 \mid \varepsilon$

Example 7: $L = \{ 0^\alpha 1^\beta \mid \alpha, \beta \geq 0, \alpha \leq 2\beta \}$

Strings in L:
ε, $0^4 1^2$, $0^4 1^3$, 1^5

Not in L:
$0^3 1$, $0^5 1^2$

Exercise: Find a CFG G generating L. i.e. $L(G) = L$.

You may be able to "guess" such a CFL.

Can you reason why your CFG works?
Example: Natural implementation of "or" (but not "and")

\[L = \{ w \in a^*b^*c^* \mid \#a(w) \leq \max\{\#b(w), \#c(w)\} \} \]

\[= \{ a^i b^j c^k \mid i \leq \max j, k \} \]

Typical strings:

- \(\varepsilon \)
- \(a \)
- \(a^3 b c^2 \)
- \(b c a \)
- \(a^{10} b^{10} c^{10} \)
- \(a^{10} b^9 c^{12} \)
- \(a^3 b^2 c^2 \)

No recursive view yet!

How about an interpretation of \(i \leq \max j, k \)?

\[i \leq \max j, k \iff i \leq j \text{ or } i \leq k \]

Important to have "equivalence"
So, now we can view the language
\[L = \{ a^i b^j c^k \mid i < j \} \cup \{ a^i b^j c^k \mid j < k \} \cup \{ a^i b^j c^k \mid i, j, k \geq 0 \} \]

CFG \(G_1 \):

Typical strings: \(as \quad bs \quad cs \)

Two views:

\[
\begin{align*}
S_1 & \rightarrow XC \\
X & \rightarrow aXb \mid \text{"what is basis?"} \\
X & \rightarrow aXb \mid B \\
B & \rightarrow Bb \mid \epsilon \\
C & \rightarrow Cc \mid \epsilon
\end{align*}
\]

\[
\begin{align*}
S_2 & \rightarrow XBC \\
X & \rightarrow aXb \mid \epsilon \\
B & \rightarrow Bb \mid \epsilon \\
C & \rightarrow Cc \mid \epsilon
\end{align*}
\]

So \(X \rightarrow^* \omega \) iff \(\omega \) is a string from \(a^i b^j \) when \(i \leq j \)

So \(C \rightarrow^* \omega \) iff \(\omega \) is a string from \(c^i \) when \(i \geq 0 \)
What about CFG G_2. What generator

$$S \rightarrow a^i b^j c^k \mid j \leq k, \ i \geq 0$$

Similar -- exercise.

So, a desired CFG G for generating L:

$$S \rightarrow S_1 \mid S_2$$

Start variable of G_2
Start variable of G_1
(V_1, Σ, P_1, S_1)
(V_2, Σ, P_2, S_2)

$$G = (V, \Sigma, P, S)$$

$V = \left\{ S \right\} \cup V_1 \cup V_2$

Assume that we do not re-use variable names.

$P = \left\{ S \rightarrow S_1 \mid S_2 \right\} \cup P_1 \cup P_2$

Idea used in this example:
Can be used to show that
No set-theoretic operation "U" preserves context freedom:
All CFLs L_1 and L_2, $L_1 \cup L_2$ is also CF.
Example 9: \[L = \{ x \in \{ a, b \}^* \mid x^r = x \} \]

Set of all palindromes over \(\{ a, b \} \)

Strings in \(L \):
- \(\varepsilon \)
- \(a \)
- \(b \)
- \(bb \)
- \(aba \)
- \(baaabhb \)
- \(baab \)

Strings not in \(L \):
- \(ab \)
- \(bba \)
- \(aaabbb \)

Typical strings:

Recursive:

Recursive: \[\text{This part is also a palindrome!} \]

\[S \rightarrow aSa \mid bSb \mid \varepsilon \]

Example 10: \[K = \{ x \in \{ a, b \}^* \mid x^r \neq x \} \]

Notice that \[K = \overline{L} = \{ a, b \}^* - L \] (\(L \) in Example 9)

Wait! Remember that, in last class notes,

Compare:

we have: \(\{ a, b \}^* - \{ a^i b^i \mid i = j \} \)

\(\neq \{ a^i b^j \mid i \neq j \} \)
\[K = \{ x \mid \text{CFA}^+ | x' = r \} \]

In Example 9, we have learned that \(L \) is CF,
so, maybe \(K = \overline{L} \)

(complementation of CF
is CF ??)

No, in general,
complementation does not
preserve context-freeness
(studied later)

But, for this specific case, \(\overline{L} = K \) is CF!

Strings in \(K \):
- \(a \ b \)
- \(b \ a \ a \ b \ a \ b \)
- \(a \ b \ b \ b \ a \ b \ b \ a \)

Strings not in \(K \):
- \(\epsilon \)
- \(a \)
- \(b \)
- \(a a \)
- \(a b a \)

Typical strings:

\[\begin{array}{cccc}
\text{a} & \text{A} & \text{A} & \text{b} \\
\text{b} & \text{A} & \text{A} & \text{b} \\
\text{a} & \text{A} & \text{A} & \text{a} \\
\end{array} \]

There must exist a pair (at mirror positions) that are non-matching.

Maybe more than one such pair.
So: \(S \rightarrow aSa | bSb | \text{"even come to non-matching"} \)

\[S \rightarrow aSa | bSb | N \]

\[N \rightarrow a ? b | b ?? a \]

What should be \(? \) or \(?? \)?

Anything!! (since the existence of the non-matching pair are identified already)

\[? \rightarrow ? a | ? b | \epsilon \]

?? - same as ??

Semantics of \(S, N, ? \)
Example 11: \(L = \{ aw \mid w \in \{a,b\}^* \} \)

The language in Example 10 is "stack language".
The language (Example 11) is "queue language".

\(L \) is not CF. (Study later.)

Your current homework has an exercise about the complement of \(L \).

Example 12: \[\text{[Sip12] Example 2.3, page 105} \]
Consider the CFG \(G = (\{S, E\}, \{a, b\}, \{S \rightarrow aSb \mid SS \mid \epsilon\}, S) \)

What is \(L(G) \)?

Typical strings generated/derived by \(S \):

\[
\begin{align*}
S & \Rightarrow \epsilon \quad \epsilon \\
S & \Rightarrow aSb \\
& \quad \Rightarrow aSb \epsilon \\
& \quad \Rightarrow aSb \epsilon \\
S & \Rightarrow SS \\
& \quad \Rightarrow SSS \\
& \quad \Rightarrow SS \epsilon
\end{align*}
\]

\(\epsilon \) is complicated?
After more example strings, maybe we guess that
$S \Rightarrow^{*} x \in \{a, b\}^{*}$
iff x is a (well-formed) block-structured string of A_s as are br and rb like in syntactically correct programs
\[
(() ())(()) ((()) ()))()
\]

Two problems:

1. Exactly, what do we mean by (well-formed) block-structured...?
 (if we cannot formulate this notion precisely ("mechanically"), then how can we have written a compiler that detects them!?)

2. Even, with a well-defined definition of "block-structured...", how can we convince ourselves that the given C&G G generating such language?
 "Nothing more! Nothing less!"

Exercises.