Continuation of Non-regularity: Examples.

Example 2. Consider the language of integer squares in unary notation:

\[L = \{ i^{12} \mid i \geq 0 \} = \{ \varepsilon, 1^4, 1^4, 1^9, 1^{16}, \ldots \} \]

Why do we guess that FAs can not recognize integer squares?

We prove the non-regularity of \(L \) by Pumping Lemma. Follow the same framework as in previous example.

Suppose that \(L \) were regular.

Let \(n \geq 1 \) be the Pumping Lemma constant.

Consider \(z = 1^{n^2} \in L \) with \(|z| = n^2 \geq n \).

We show that, for all \(u, v, w \) such that \(z = uvw \) and \(|u| \leq n \), \(|v| \geq 1 \)

there exists \(i \geq 0 \) such that \(u^i v^i w \in L \).

For this language, the "sliding" of \(u, v, w \) from left to right generates one (general) case.
\[z = \frac{n^2}{u + v} \]

So, what is a possible \(z \geq 0 \) such that \(uvvw \notin L \)?

So, \(u = \frac{1}{|v|} \) by \(|v| + |v| \leq n \), \(|v| \geq 1 \)

\[v = \frac{n^2 - 1}{|v| - 1} \]

As usual, an obvious trial is \(z = 0 \).

Try that yourself, and see if you encounter any problem(s).

(Note: Even if you did not succeed, with \(z = 0 \),

to generate a contradiction \(uvvw \notin L \),
it would just indicate that you might have made a wrong guess in \(z \)!
That failure does not necessarily mean the failure of Pumplin's Lemma, and you can not conclude that \(L \) should be regular!

In fact, there are languages that are known to be non-regular, and Pumplin's Lemma does fail to prove it — the conclusion of Pumplin's Lemma is always satisfied and no contradiction can be generated.)
Back to the example.

We try $i = 2$:

\[uv^2w = \frac{1}{1+i} \frac{1}{1+i} \frac{1}{1} = 1 \]

We want to argue that $uv^2w \notin L$, but why?

What is the membership of L? "Integers" squares.

So, we want to argue that:

\[n^2 < n^2 + 1 < (n+1)^2 \]

We want to demonstrate this, then $uv^2w \notin L$.

Proving (1):

Certainly $n^2 < n^2 + 1$ since $1 > 1$.

Why $n^2 + 1 < (n+1)^2$?

Consider the following equivalent inequalities:

\[n^2 + 1 < (n+1)^2 \]

\[\iff n^2 + 1 < n^2 + 2n + 1 \]

\[\iff 1 < 2n + 1 \]

This is true since $1 \leq 1uv1 \leq n < 2n + 1$

Therefore, (1) is proven.
Two "benchmark" languages known non-regular
\[\{ a^i b^i \mid i \geq 0 \} \text{ over alphabet } \{a,b\} \]
\[\{ a^i \mid i \geq 0 \} \text{ over unary alphabet } \{a\} \]

Example 3. Consider the "queue language"
\[L = \{ wvz \mid w \in \{0,1\}^*, z \in \mathbb{N} \} \]
\[\varepsilon, 00, 11, 011011 \in L \quad 0, 1, 001, 01 \notin L \]

Educated guess: \(L \) is not regular — why?
(read similar motivation for example 1)

Suppose that \(L \) were regular.
Let \(n \geq 1 \) be the Pumpliy Lemma constant.

Try considering \(z = 0^n 0^n \in L \) with \(121 = 2n \geq n \).

Then, you'll see that you can not generate any contradiction — regardless how you consider all possible \(u, v, w \)...

But, the failure of \(z = 0^n 0^n \) does not necessarily mean the failure of Pumpliy Lemma.

Here, we consider \(z = 0^n 1 0^n \in L \)
with \(121 = 2(n+1) \geq n \).
Consider all possible \(u, v, w \in \Sigma^* \) such that \(z = uvw \) and \(\forall (uv1 \leq n) \) and \((v1 \geq 1) \).

We generate all possible cases by “sliding \(u, v, w \) from left to right.”

Case 1: \[\begin{array}{c|c|c}
\text{on} & \text{on} & \text{1} \\
\hline
\text{on} & \text{1} & \text{on} \\
\end{array} \]

\[u = 0^n 1 w1 \]
\[v = 0^1 v1 \]
\[w = 0^{n-1w-1v1} \text{1 on1} \]

What should be \(i \geq 0 \) such that \(uv^i w \in \mathcal{L} \)?
"\(i = 0 \)" works, "\(i = 1 \)" never works, "\(i = 2 \)" works.

Let us try \(i = 3 \):
\[uv^3 w = 0^n 1 0^n 0 0^n 0^n 1 0^n 1 \]
\[= 0^{n+21v1} 1 0^n 1 \]

Why \(uv^3 w = 0^{n+21v1} 1 0^n 1 \notin \mathcal{L} \)?
\[\text{If } 0^{n+21v1} 1 0^n 1 \in \mathcal{L}, \]
so \(0^{n+21v1} 1 0^n 1 = w w \) for some \(w \).

Hence \(w \) (the 2nd \(w \)) ends with 1.
That means \(w \) (the 2nd \(w \)) must be \(0^n 1 \).
And 1st \(w \) must be \(0^{n+21v1} \).

Noting that \(1v1 \geq 1 \), we have \(uv^3 w = 0^{n+21v1} 1 0^n 1 \notin \mathcal{L} \).

Case 2, ... : Only case 1 — due to "\(|uv1| \leq n \)".
Example 4 (Incomplete)

\[L = \{ w \# w | w \in \Sigma^0.13^* \} \]
(similar to the queue language in Example 3)

The language \(L \) is not regular? Exercise.

Example 5

\[L = \{ x \in \Sigma^0.13^* | \#_a(x) = \#_b(x) \} \]

This language \(L \) is not the same as
\[\{ a^i b^i | i \geq 0 \}, \]
\[\text{in fact, } L \neq \{ a^i b^i | i \geq 0 \} \]

KWNON non-regular

The (known) non-regularity of \(\{ a^i b^i | i \geq 0 \} \)
does not necessarily imply its super-set,
like \(L \), to be non-regular.

(Think about \(\Sigma^* \supset \) any non-regular language)

Clearly regular

But this language \(L \) is non-regular.

Use Pumping Lemma
Suppose that \(L \) were regular.

Consider \(z = a^n b^n \in L \) (why?) with \(|z| = 2n \geq n \).

Consider all possible \(u, v, w, \ldots \)

\[
\begin{align*}
\text{identical to the arguments } & \text{ in Example 1 for the } \\
\text{non-regularity } & \exists \{a^n b^n \mid i \geq 0\}.
\end{align*}
\]

Note: when we argue that
for some chosen \(i \geq 0 \),
show that \(uv^i w \in L \)

make sure that we are aware that the membership \(z \in L \) is "\(\#(\cdot) = \#_b(\cdot) \)",

Not simply \(a \ldots b \ldots

Hence, we develop a closure-property framework to show non-regularity, and apply it to \(L \) here.
In earlier classes, we used closure properties of regularity to show that a language L is regular:

- Use some known regular languages L_1, L_2, \ldots
- Some known regularity-preserving operators (closure properties): $\cup, \cap, \setminus, \circ, \ast, r$

Try to demonstrate that, using some known regular languages with regularity-preserving operators, we can construct the target language L. For example:

$$((L_3 \setminus L_4) \cap L_3) \circ L_1 = L$$

Challenge:
- What are the regular languages to be used eventually morphed to be L?
- What are the regularity-preserving operators to be used eventually morphed to be L?

See examples done in earlier classes.
How to use closure properties to show that a language L is not regular?
- contradiction argument

Suppose that the target language L were regular.

Challenge:
- Choose some known regular languages (accepted by FAs, denoted by $r_1, r_2, ...$)
- Choose some known regularity-preserving operators ($\cup, \cap, -, \o, \cdot, ^*$, etc.)
- Use closure properties

Try to demonstrate that, using
- L (supposed to be regular)
- with some known regular languages
- via some regularity-preserving gadgets

we can construct a non-regular language

For example

\[
\left(\left(L_1 \cap L_4 \right) \cdot L_3 \right) - L_2 = \{ w w w \mid w \in \{a, b\}^* \}
\]

supposed regular \quad known regular \quad known regular \quad known regular

but this is non-regular

(see example 3)
We use the above framework to show that
\[L = \{ x \in \Sigma^* \mid \#_a(x) = \#_b(x) \} \]
Suppose that \(L \) were regular.
Then, consider \(L \cap a^* b^* \)
\(\uparrow \)
\[\text{this is a regular language (regular expression)} \]
\[\text{regularity-preserving} \]
\[\text{so this should be a regular language.} \]
\[\text{BUT, } L \cap a^* b^* = \{ a^i b^i \mid i \geq 0 \} \]
\(\uparrow \)
\[\text{should be regular} \]
\[\text{why? check it} \]
\[\text{this is a KNOWN non-regular language.} \]
\[\text{contradiction!} \]
\[\text{so } L \text{ is non-regular.} \]
Example 6. Consider the language
\[L = \{ a^i b^j \mid i, j \geq 0 \land i \neq j \} \]

"Rookie mistake": This language \(L \) is not the complement of the language \(\{ a^i b^j \mid i \geq 0 \} \).

The language \(\{ a^i b^j \mid i \geq 0 \} \)
\[= \{ x \mid x \in a^* b^* \land \#_a(x) = \#_b(x) \} \]

So, \[\{ a^i b^j \mid i \geq 0 \} \]
\[= \{ x \mid x \in a^* b^* \land \#_a(x) \neq \#_b(x) \} \]

That is,
\[\{ a^i b^j \mid i \geq 0 \} \]
\[= \{ x \mid x \notin a^* b^* \} \]
\[\cup \{ x \mid x \in a^* b^* \land \#_a(x) \neq \#_b(x) \} \]
\[= \{ x \mid x \notin a^* b^* \} \]
\[\cup \{ a^i b^j \mid i, j \geq 0 \land i \neq j \} \]

\[\left(\text{So, } \{ a^i b^j \mid i \geq 0 \} \neq \{ a^i b^j \mid i, j \geq 0 \land i \neq j \} \right) \]
\[\text{or } \{ a^i b^j \mid i, j \geq 0 \land i \neq j \} \neq \{ a^i b^j \mid i, j \geq 0 \land i = j \}. \]
Back to example 6:
\[L = \{ a^i b^j \mid i, j \geq 0 \land i \neq j \} \text{ is not regular.} \]

A direct application of Pumping Lemma on \(L \) is not “simple”.

- What should be a candidate \(z \in L \) with \(|z| \geq n \) such that the conclusion of Pumping Lemma fails?

- Read [Sip12] Problem 1.46 part b.

Here, we apply the “Closure properties”.

Suppose that \(L \) were regular.

Then \(L = \Sigma^* \cdot L \) would be regular

\[L = \{ x \mid x \in a^* b^* \lor (x \in a^* b^* \land \#(x) = \#(y)) \} \]

How can we isolate the 2nd component out?

Then, \(L \cap a^* b^* = \{ x \mid x \in a^* b^* \land \#(x) = \#(y) \} \)

Check it

\[= \{ a^i b^i \mid i \geq 3 \text{ known} \} \text{ non-regular, a contradiction!} \]

So \(L \) is not regular.
(Informal) justification of Pumping Lemma
(details in [Sip12] Theorem 10.70 and proof).

For every language \(L \), if \(L \) is regular, then \(\exists n \geq 1 \) \(\forall z \in L \) \(|z| \geq n \Rightarrow \exists u,v,w \) \(z = uvw \)
\(|uv| \leq n \) \(\wedge |v| \geq 1 \) \(\forall i \geq 1 \) \(u^i v^i w \in L \).

As \(L \) is regular, \(L = L(M) \) for some DFA \(M = (Q, \Sigma, \delta, q_0, F) \)
with \(|Q| = n \) (\(n \) states).

Consider an arbitrary \(z \in L = L(M) \) with \(|z| \geq n \).

(accepted by \(M \))

How to find \(u,v,w \) such that \(z = uvw \)
\(|uv| \leq n \)
\(|v| \geq 1 \)
and \(\forall i \geq 0 \) \(u^i v^i w \in L = L(M) \)
(accepted by \(M \))

— Digambara Principle!

Write \(z = a_1 a_2 \ldots a_m \) with \(m \geq n \) and \(a_i \in \Sigma \) for all \(i \).

Now, consider the effects on \(M \) (deterministic computations)
on the successive strings as inputs

\[
\begin{align*}
\text{On } & \varepsilon \text{ — ending state } F_0 \\
\text{On } & a_1 \text{ — ending state } ? \\
\text{On } & a_1 a_2 \text{ — ending state } ? \\
\text{On } & a_1 a_2 a_3 \text{ — ending state } ? \\
\vdots
\end{align*}
\]

\(m+1 \) (\(\geq n+1 \))

Trials, \(n \) states
So there must exist two distinct input/strings
\[a_1 a_2 \ldots a_i \quad \text{and} \quad a_1 a_2 \ldots a_i a_{i+1} \ldots a_j \quad 0 \leq i < j \]
\[a_1 a_2 \ldots a_i a_{i+1} \ldots a_j \quad a_{i+2} a_{i+3} \ldots a_m \]
that cause M to the same ending state

In fact, the Pigeonhole Principle gives that
\[0 \leq i < j \leq n \]
The "same ending state" must occur within no first \(n+1 \) trials

So,
\[u = a_1 a_2 \ldots a_i \quad |uv| = j \leq n \]
\[v = a_{i+1} a_{i+2} \ldots a_j \quad |v| = j-i \geq 1 \]
\[w = a_{j+1} a_{j+2} \ldots a_m \]

and why \(uv^i w \in L \) for \(i = 0, 1, 2, \ldots \) ?
Chapter 2 Context-Freedom

\[\text{a language } L \text{ is regular } \rightarrow \text{ } \L \text{ is context-free.} \]
\[\text{in general} \]

Applications:
- Include the applications of regularity
- Specification of programming languages
 (Extended Backus-Naur Form)
- Compiler theory
- Bioinformatics (specification of "genetic operations")

We study the notion of context-freedom with context-free grammars (CFGs)
then with pushdown automata (PDAs).
What is a CFG?

A 4-tuple \((V, \Sigma, P, S)\) where

- \(V\) - finite non-empty set of variables (non-terminals)
- \(S \in V \setminus \{\phi\}\) - start variable
- \(\Sigma\) - alphabet (set of terminals)
- \(P\) - rewrite transition function
 - a finite set of productions
 - rewriting rules
 - each of which is of the form
 - \(A \rightarrow \alpha\)
 - where \(A \in V\) and \(\alpha \in (V \cup \Sigma)^*\)

Abbreviation, \(A \rightarrow \alpha_1, A \rightarrow \alpha_2\) in \(P\)
written as \(A \rightarrow \alpha_1 | \alpha_2\) in \(P\)

Grammar system: generator

Machine: recognizer acceptor

Language: recognize
Example: \(G = (V, \Sigma, P, S) \)

where:

\(V = \{ S \} \)

\(\Sigma = \{ a, b \} \)

\(P = \{ S \rightarrow \varepsilon, S \rightarrow a S b \} \)

What language does \(G \) generate?

Need to define "derivation" (generating/deriving) in machines.

Derivation of CFG \(G = (V, \Sigma, P, S) \):

1-step derivation, denoted by \(G \Rightarrow \)

(abbreviation \(G \Rightarrow \rightarrow \) when no context is clear)

\(\Rightarrow \) is a binary relation on \((VU\Sigma)^* \)

For \(\alpha, \beta \in (VU\Sigma)^* \),

\(\alpha \Rightarrow \beta \) iff \(\alpha = \varepsilon, A \varepsilon_2 \) for some \(A \in V \)

\(\land \beta = \varepsilon, \varepsilon_1 \varepsilon_2 \) for some \(\varepsilon, \varepsilon_1, \varepsilon_2 \in (V\Sigma)^* \)

\(\land A \rightarrow \varepsilon \in P \)
multi-step derivation, denoted by \(\Rightarrow^* \) (abbreviation: \(\Rightarrow^* \))

\(\Rightarrow^* \) is the "star-closure" of \(\Rightarrow \)

For \(\alpha, \beta \in (\Gamma \cup \Sigma)^* \)

\[\alpha \Rightarrow^* \beta \text{ iff } \exists \delta_1, \delta_2, \ldots, \delta_n \in (\Gamma \cup \Sigma)^* \text{ for some } n \geq 0 \text{ such that } \]

\[\alpha = \delta_1 \Rightarrow \delta_2 \Rightarrow \ldots \Rightarrow \delta_n = \beta \text{ (when } n = 0, \alpha = \beta \) \]

String \(x \in \Sigma^* \) derived by \(S \):

\[S \Rightarrow^* x \]

Language generated by \(G \), \(L(G) = \{ x \in \Sigma^* \mid S \Rightarrow^* x \} \)

Above example: CFG \(G = (\{ S \}, \{ a, b \}, \{ S \Rightarrow aSb \}, S) \)

What is \(L(G) \)?

What are the forms of strings derived/generated by \(S \)?

\[L(G) = \{ a^i b^i \mid i \geq 0 \} \]

\(\uparrow \)

non-regular

Later

A language \(L \) is called context-free (CF) or a context-free language (CFL) if \(L = L(G) \) for some CFG \(G \).