1. Read the notes above carefully.

2. For each of the following languages, construct a finite automaton (deterministic, nondeterministic, or nondeterministic finite automaton with ε-transitions — unless unless specifically stated) that accepts the language.

 You need to give the key idea(s) for your construction, and brief and precise interpretations for the states of the machine.

 (a) [Construction of “deterministic finite automaton” is required.]

 \[\{ x \in \{0, 1\}^* \mid \#_0(x) = \#_1(x) \text{ and every prefix of } x \text{ has at most one more 0 than } 1s \text{ and at most one more } 1 \text{ than } 0s \} \].

 (Note: \#_u(v) denotes the number of occurrences of a substring \(u \) in a string \(v \).)

 (b) [Construction of “deterministic finite automaton” is required.]

 \[\{ a^ib^j \mid i, j \geq 0, \text{ and } i + j \text{ is even} \}. \]

 (c) [Construction of “deterministic finite automaton” is required.]

 \[\{ x \in \{0, 1, 2\}^* \mid \#_1(x) + \#_2(x) \text{ is divisible by } 3 \}. \]

 (d) \(\{ x \in \{0, 1\}^* \mid \text{ there exist two } 0s \text{ in } x \text{ that are separated by a string of length } 5k \text{ for some } k \geq 0 \} \).

 (e) The set of all strings over the alphabet \(\{a, b, c\} \) that yield the same value when evaluated from left to right as right to left by “multiplying” according to the following table in Figure 1.

 For examples: \((a \circ b) \circ b = (c \circ b) = a \text{ and } (a \circ (b \circ b)) = (a \circ a) = a\), whereas \((a \circ b) \circ c) = (c \circ c) = b \text{ and } (a \circ (b \circ c)) = (a \circ c) = c.\)

 \[
 \begin{array}{c|ccc}
 \circ & a & b & c \\
 \hline
 a & a & c & c \\
 b & b & a & c \\
 c & c & a & b \\
 \end{array}
 \]

 Figure 1: A non-associative multiplication table for \(\circ \).

3. Prove that there does not exist any deterministic finite automaton that accepts the following language:

 \[\{ab^n a^{2n} \mid n \geq 1 \}. \]
4. Consider a nondeterministic finite automaton $M_1 = (Q, \Sigma, \delta, q_0, F_1)$. Define a (new) nondeterministic finite automaton $M_2 = (Q, \Sigma, \delta, q_0, F_2)$ with $F_2 = Q - F_1$.

Prove, or disprove (with explicit counter-example and detailed explanation), the following statement: the language $L(M_2)$ is the complement of the language $L(M_1)$ (that is, $L(M_2) = \Sigma^* - L(M_1)$).

5. Let the alphabet $\Sigma = \{a\}$. Assume that that M is a nondeterministic finite automaton with m states such that M accepts every string $x \in \Sigma^*$ with $|x| \leq m$.

Prove, or disprove (with explicit counter-example and detailed explanation), the following statement: $L(M) = \Sigma^*$.

6. Convert the following nondeterministic finite automaton with ϵ-transitions (see figure below), M, to an equivalent nondeterministic finite automaton M_1, and then using the Subset Construction to convert M_1 to an equivalent deterministic finite automaton M_2 with its inaccessible states removed.

Explicitly and briefly write down each step which you perform, such as:

(a) Computing all the ϵ-closures of the states of M (the notation $E(\cdot)$ introduced in page 56 of [sip12]), and
(b) showing complete state-transition diagrams of M_1 and M_2.

![Finite Automaton Diagram]

- q_0 to q_1 on ϵ
- q_1 to q_2 on 1
- q_0 to q_1 on 0
- q_1 to q_0 on ϵ
- q_2 to q_0 on 0
- q_0 to q_2 on 1