Problem 4

Note that the underlying graph is "simple," i.e., no "self-looping" edges.
Let \(G \) be an arbitrary (simple) graph with \(n \) vertices, \(n \geq 2 \).

Note that the sequence of possible degrees is:
\[
0, 1, 2, \ldots, n-1
\]
\(n \) possibilities.

We will eliminate (below) one of the \(n \) possibilities; hence by the pigeonhole principle, there exist at least two vertices with the same degree.

If \(G \) has no isolated vertex — vertices of degree 0 — then the sequence of possible degrees is: 1, 2, \ldots, n-1, and we are done.

Now, we consider the complementation of above case, i.e., there exists a vertex \(v \) with \(\deg(v) = 0 \).
Then, what can we say about the possible degrees of all other vertices?

We see that, for every vertex \(u \) of \(G \):
\[
\deg(u) \leq n-1
\]
(no self-looping, and no adjacency with \(v \)).
Then, the sequence of possible degrees is: 0, 1, \ldots, n-2, and we are done too.
Problem 5.

For parts (a) and (b), use mathematical induction. For example:

Example: (a) \(n \geq 0 \) \(|x_n| = |y_n| \)

Induction on \(n \).

Basis \(n = 0 \), prove \(P(0) \), i.e., \(|x_0| = |y_0| \).

Since \(x_0 = 0 \) and \(y_0 = 1 \), \(|x_0| = 0 \) and \(|y_0| = 1 \).

Inductive step: prove \(\forall n \geq 0 \) \(P(n) \Rightarrow P(n+1) \).

Let \(n \geq 0 \) be arbitrary.

Assume \(P(n) \), i.e., \(|x_n| = |y_n| \) — induction hypothesis.

Now, to prove \(P(n+1) \), i.e., \(|x_{n+1}| = |y_{n+1}| \), we consider:

\[x_{n+1} = x_n \cdot y_n \]

by the inductive definition of \(\{x_n\} \) \(n \geq 0 \)

and \(|x_{n+1}| = 1 \cdot |x_n \cdot y_n| \)

\[= |x_n| \cdot |y_n| \]

by a property of the absolute value function.

Similarly, we can see that

\[|y_{n+1}| = |y_n \cdot x_n| \]

\[= |y_n| \cdot |x_n| \]

\[= |x_n| \cdot |y_n| \]

\[= |x_n| \cdot |y_n| \]

\[= |x_n \cdot y_n| \]

\[= |x_{n+1}| \]

as desired.

This completes the induction step.

(by induction, we have shown that \(\forall n \geq 0 \), \(P(n) \) is true.)

(c) A string \(x \) is a palindrome iff \(x^r = x \).

We prove that \(\forall n \geq 0 \) \(\{x_n \text{ and } y_n \text{ are palindromes}\} \)

by mathematical induction (strong form) on \(n \).

Basis: \(n = 0 \), since \(P(0) \), i.e., \(x_{20}^r = x_{20} \) and \(y_{20}^r = y_{20} \).

Note: \(x_0^r = 0^r = 0 = x_0 \),

\(y_0^r = 1^r = 1 = y_0 \).
Induction Step: Prove that
\[\forall n \geq 0 \quad \left(P(0) \land P(1) \land \ldots \land P(n) \right) \Rightarrow P(n+1) \]

Let \(n \geq 0 \) be arbitrary.

Assume \(P(0) \land P(1) \land \ldots \land P(n) \).

We prove \(P(n+1) \), i.e.,

\[x_{2(n+1)} = x_{2n+1} \]
\[y_{2(n+1)} = y_{2n+1} \]

Consider \(x_{2(n+1)} = x_{2n+2} \)

\[= x_{2n+1} \cdot y_{2n+1} \quad \text{by the inductive hypothesis} \]

\[= (x_n \cdot y_n) \cdot (y_n \cdot x_n) \quad \text{by the associative law} \]

Now, \(x_{2(n+1)} = (x_n \cdot y_n \cdot y_n \cdot x_n) \)

\[= x_n \cdot y_n \cdot y_n \cdot x_n \quad \text{by the inductive hypothesis} \]

\[= x_n \cdot y_n \cdot y_n \cdot x_n \quad \text{by the inductive hypothesis} \]

As desired.

The complete the induction step.

By induction, we have shown that \(\forall n \geq 0 \quad P(n) \) is true.
(d) From the inductive definition, \(\exists x_n \) with \(\sum_{n=0}^{\infty} y_n = 4 \), we observe that for all \(n \geq 2 \), \(y_n \) begins with 10 and ends with 10, if \(y_n \) begins with 10 and ends with 10.

Then, use an induction (on \(n \)) to show that neither \(x_n \) nor \(y_n \) contains 000 or 111 as substrings.

Problem 6.

(a) \(\{ w = a \} \) is in the language. \(\{ w = a \} \) is not in the language.

(b) \(\{ w = \varepsilon \} \) is in the language.

(c) \(\{ w = a \} \) is not in the language.

(d) \(\{ w = \varepsilon \} \) is not in the language.

(e) Can you find any string that is not in the language?
Problem 7. We disprove the given claim.

Suppose on contrary that we have two languages L_1 and L_2 such that $L_1 \neq \varepsilon^*$ and $L_2 \neq \varepsilon^*$, such that $L = L_1 L_2$.

Since $L = \{ u \in \varepsilon^* | u = vv \text{ for some string } v \in \varepsilon^* \}$, every even-length string of 0s must be in $L = L_1 L_2$ by supposition, and hence are arbitrarily long strings of 0s that are in either L_1 or L_2.

Similarly, there are arbitrarily long strings of 1s that are in either L_1 or L_2.

Where are all those strings of 0s and strings of 1s distributed into L_1 or L_2?

Note that it is not possible for L_1 to have a non-empty string of 0s as L_2 to have a non-empty string of 1s, since their concatenation $(0, 1) = L$ could not be in L.

Similarly, we cannot have a string of 1s in L_1 and a string of 0s in L_2.

Thus, the only two remaining cases are for all the strings of 0s or all the strings of 1s to be in L_1 or for all those strings to be in L_2.

We show that these two cases may not exist.

Case when all the strings of 0s or all the strings of 1s are in L_1. Let y be a string in L_2.
Now, no string \(w \leq L_2 \) must contain both symbols 0s and 1s.

Since no one substring (long strings of 0s in \(L_1 \) or \(L_1 \) contains a string \(x \cdot y \) of \(0s \) with \(|x| \geq |y| \).

Then, the concatenation \(xy \), which is in \(L_2 (=L) \) has 1s in its second half and not in its first half. Thus, \(xy \) cannot be in \(L \), which is a contradiction.

Case when all the strings 0s and all the strings 1s are in \(L_2 \); similar contradictory argument.

Therefore, the supposition that \(L = L_1 \) or \(L_2 \leq \text{sup} \) \(L \) is false.
Problem 8:

(a) We prove that, \(\forall \) languages \(L_1, L_2, L_3, (L_1 \cup L_2)L_3 \subseteq L_1 L_3 L_2 L_3 \)

Let \(L_1, L_2, \) and \(L_3 \) be arbitrary languages.

Consider an arbitrary \(x \in (L_1 \cup L_2)L_3 \).

So \(x = yz \) for some \(y \in L_1 \cup L_2 \) and \(z \in L_3 \),

that is, \(x = yz \) for some \((y \in L_1 \) or \(y \in L_2 \)) \(\) and \(z \in L_3 \),

that is, \(x = yz \) for some \((y \in L_1 \) and \(z \in L_3 \)) \(\) or \((y \in L_2 \) and \(z \in L_3 \))

\(yz \in L_1 L_3 \) \(yz \in L_2 L_3 \)

\(x \in L_1 L_3 L_2 L_3 \), as desired.

(b) We prove that, \(\forall \) languages \(L_1, L_2, L_3, (L_1 \cup L_2)L_3 \subseteq (L_1 \cup L_2)L_3 \)

Let \(L_1, L_2, \) and \(L_3 \) be arbitrary languages.

Consider an arbitrary \(x \in L_1 \cup L_2 \cup L_3 \).

That is, \(x \in L_1 L_3 \) or \(x \in L_2 L_3 \).

First, consider the case: \(x \in L_1 L_3 \).

So \(x = yz \) for some \(y \in L_1 \) and \(z \in L_3 \).

This implies that \(x = yz \) for some \(y \in L_1 \cup L_2 \) and \(z \in L_3 \),

which gives that \(x \in (L_1 \cup L_2)L_3 \).

The case \(x \in L_2 L_3 \) is similar.
(c) We show that "A language L_1, L_2, L_3
$(L_1 - L_2) L_3 \subseteq L_1 L_3 - L_2 L_3$" is false.
That is, we show that
\exists languages L_1, L_2, L_3
$(L_1 - L_2) L_3 \not\subseteq L_1 L_3 - L_2 L_3$
(by a counterexample).

Consider $L_1 = \{a, b\}$, $L_2 = \{c, d\}$
$L_3 = \Sigma^* \subseteq \Sigma^*$ the underlying alphabet.
Then, $(L_1 - L_2) L_3 = (\{a, b\} - \{c, d\}) \Sigma^* = \{a, b\} \Sigma^*$,
and $L_1 L_3 - L_2 L_3 = \{a, b\} \Sigma^* - \{c, d\} \Sigma^* = \{a, b\} \Sigma^* - \Sigma^*$.

Obviously, $(L_1 - L_2) L_3 \not\subseteq L_1 L_3 - L_2 L_3$.

(d) We prove that, "A language L_1, L_2, L_3, $L_1 L_3 - L_2 L_3 \subseteq (L_1 - L_2) L_3$.
Let L_1, L_2, L_3 be arbitrary languages.
Consider an arbitrary $x \in L_1 L_3 - L_2 L_3$.

So $x = yz$ for some $y \in L_1$ and $z \in L_3$, and $x \not\in L_2 L_3$.

Now, ask: Can $y \in L_2$?

No: If y were in L_2,
then $x = yz$ with $y \in L_2$ and $z \in L_3$.
These give that $x \in L_2 L_3$ which contradicts our assumption.

Hence, we have $x = yz$ for some $y \in L_1$ and $y \not\in L_2$ and $z \in L_3$.
So $x = yz$ for some $y \in L_1 - L_2$ and $z \in L_3$.

I.e., $x \in (L_1 - L_2) L_3$, as desired.