Problem 2:

(a) No consecutive 1s, allowing for no consecutive 1s.

(b) 0 or more 1s. 0 must be followed by either a 0 or at least two 1s before another 0.

(c) (01^+001^+0000 (1^0+1^00) 1

(d) A segment of 0's, followed by 1, and with any number of 0s between.
Problem 2

(a) We prove that \((s+r)^* = r^*(s^*r^*)^*\)

(b) To show that the set of all palindromes is a regular language, we apply

By induction on \(n\) (Then this implies the desired language—equally).

Here we elect to follow the approach. Showing:

Let \(x \in (L \cup L(n))^*\). Then \(x = yz\) with \(y \in L(n) \cup L(n)^*\) and \(z \in L(r)^*\).

Case when \(y = e\): Then \(y = y\)...

Case when \(y \neq e\): Then \(y = y_1,\ldots, y_n\) for some \(n \geq 1\) and \(y_i \in \{1, 2, \ldots, n\}\) with \(y_i \neq e\) for some \(i \neq 1\).

So, for each \(i = 1, 2, \ldots, n\)

\(y_i = u_i \cup v_i\) where \(u_i \in (L(n) \cup L(n))^*\) and \(v_i \in L(r)^*\),

or \(y_i = v_i\) where \(v_i \in L(r)^*\).
This says that
\[x = y_1 y_2 \ldots y_n z \in L(r)^n \cdot L(s) L(r^* U L(r)) \cdot \]

Therefore \(x \in L(r) \cdot L(s) L(r) U L(r) \).

Thus, \(L(r) L(s) U L(r) \cdot L(r^*) \subseteq L(r) \cdot L(s) L(r) U L(r) \).

Similar argument can show the reverse subset containment.

Therefore, \((rs + r)^* r = r (sr + r^*) \).

(b) \((r+s)^* \neq r^* + s^* \) in general.

counter-example: \(r= a \) and \(s = b \) \((\Sigma = \{ a, b \}) \)

\((r+s)^* \) denotes the language \(\{ a, b \}^* \)

and \(r^* + s^* \) denotes the language \(\{ a \}^* \cup \{ b \}^* \).

(c) \((r^* s^*)^* = (r+s)^* \).

True; prove it.
4

(a) Let \(\alpha \leq 0 \) and \(\beta \geq 0 \). Show that \(\gamma(n) = \alpha n + \beta \) is not regular. Let \(\gamma(n) = \alpha n^2 + \beta n + \gamma \). Consider all possible \(\alpha, \beta, \gamma \). There is one case where \(\gamma(n) \) is not regular.

\[\gamma(n) = \alpha n^2 + \beta n + \gamma \]

(b) Let \(\alpha > 0 \) and \(\beta > 0 \). Show that \(\gamma(n) = \alpha n^2 + \beta n + \gamma \) is not regular. Let \(\gamma(n) = \alpha n^2 + \beta n + \gamma \). Consider all possible \(\alpha, \beta, \gamma \). There is one case where \(\gamma(n) \) is not regular.

\[\gamma(n) = \alpha n^2 + \beta n + \gamma \]

(c) Let \(\alpha < 0 \) and \(\beta < 0 \). Show that \(\gamma(n) = \alpha n^2 + \beta n + \gamma \) is not regular. Let \(\gamma(n) = \alpha n^2 + \beta n + \gamma \). Consider all possible \(\alpha, \beta, \gamma \). There is one case where \(\gamma(n) \) is not regular.

\[\gamma(n) = \alpha n^2 + \beta n + \gamma \]
(b) \(L_2 = \{ a^{i^3} \mid i \geq 0 \} \) is not regular - by Pumping Lemma.

Suppose that \(L_2 \) were regular.

Let \(n \) be the constant in Pumping Lemma.

Consider \(z = a^{n^3} \in L_2 \) with \(|z| = n^3 \geq n \).

We may develop a contradiction similar to that for proving the non-regularity of \(L_1 = \{ a^i \} \).

Slightly general observation:
for all \(i \geq 0 \), the decomposition \(u, v, w \) gives:
\[uv^i w = a^{n^3 + (i-1)\cdot n} \cdot a^n \cdot a^{i^3} \cdot a \cdot a \]

However, if such \(y \) existed, then
\[n^3 + (i-1)\cdot n \leq (n_i)^3 \]
for all \(i \geq 0 \), where \(n_i \in \mathbb{N} \) depends on \(i \).

This is "trivially" false.
Table 5.
(a) \(L = \{ uu^R v \mid u, v \in (01)^+ \} \) is regular, since

\[L \text{ is denoted by a regular expression} \]

\[o(ou_1)^+ o \text{ U } 1(ou_1)^+ 1. \]

To see that \(L \subseteq L(0(ou_1)^+ 0 \text{ U } 1(ou_1)^+ 1) \):

Let \(x \in L \) be arbitrary, i.e., \(x = uu^R v \) for some \(u, v \in (01)^+ \).

Since \(u \in (01)^R \), \(u = ou' \) or \(u = 1u' \) for some \(u' \in (01)^* \).

Assume \(u = ou' \) (the case for \(u = 1u' \) is similar).

Then \(x = uu^R v = ou' v (ou')^R = ou' v uu^R o \subseteq o(ou_1)^+ 0 \)

To see that \(L(0(ou_1)^+ 0 \text{ U } 1(ou_1)^+ 1) \subseteq L \):

Let \(x \in L(0(ou_1)^+ 0 \text{ U } 1(ou_1)^+ 1) \) be arbitrary.

Assume \(x \in o(ou_1)^+ 0 \) (the case for \(x \in 1(ou_1)^+ 1 \) is similar).

Then \(x = uu^R v \) where \(u = 0 \) and \(v \in (01)^+ \),

that is, \(x \in L \).

(b) \(L = \{ uu^R v \mid u, v \in (01)\}^+ \) is not regular. Suppose that it were.

We can apply the Pumping Lemma directly on \(L \). Here we use

closure properties for regularity first to "restrict" \(L \) into \(L' \):

Consider \(L' = L \cap \{1(02)^*011 \} \).

Certainly \(L' \) would be regular since "\(\cap \)" preserves regularity.

But, what is \(L' \) (or, why do we consider "\(\cap \)"?)

For \(x \in L' \), \(u^2 v^2 \), \(x \) is of the form \(uu^R v^2 \):

Hence \(L' = \{ 10^{2n+1} 110^{2n+1} 11 \mid n \geq 0 \} \).

Now, apply the pumping lemma

on \(L' \) (remember, there are may cases to check).

\[\begin{array}{c|c|c}
 2n & 10^{2n+1} & 110^{2n+1} 11 \\
 0 & u & u^R v^2 \\
 1 & \text{an impossible decomposition into } u v^2 v^2 \\
 \end{array} \]

This is the only possible decomposition into \(uu^R v \)

(check this)
Problem 6
(a) We prove L is non-regular by contradiction via the closure properties of regular languages.

Suppose not, L were regular.

Then, $I = \frac{a^* b^3 \ast - L}{(a+b)^*}$ would be regular.

What is I?

$I = \{ w \in \{a,b\}^* \mid \#_a(w) = 3 \}$.

Hence, we consider

$I \cap a^* b^* = \{ w \in \{a,b\}^* \mid \#_a(w) = \#_b(w) \land w \to b \text{ no form } a^* b^* \}

= \{ a^i b^j \mid i \geq 3 \}

\text{known non-regular, a contradiction.}

Thus, L is not regular.