Problem 2.

(a) Basic idea: The machine nondeterministically guesses (when reading an input symbol 0) at what a substring of $0(0+1)^+0$ that is forthcoming $0, 1$

$$M: \quad \text{Start} \rightarrow Q_{\text{start}} \quad 0 \rightarrow Q_1 \quad 0, 1 \quad \text{Good} \rightarrow Q_{\text{even}} \quad 0 \rightarrow Q_{\text{end}}$$

Q_{start}: nondeterministically wait or guess on an input symbol 0.

Q_1, Q_{even}, Q_{end}: having encountered an input symbol 0, verify if a substring of the form $0(0+1)^+0$ appears.

Can verify that $\forall x \in \{0, 1\}^*$, M accepts x if $x \in \{0(0+1)^+0\}^* x^*$

(b) The given language is the disjoint union of the two languages:

$L_a = \{ x \in (a, b, c)^* | \#(a(x)) \geq 3 \text{ and } 0 \leq \#(b(x)), \#(c(x)) \leq 2 \}$

$L_b = \{ x \in (a, b, c)^* | \#(a(x)) \geq 3 \text{ and } 0 \leq \#(b(x)), \#(c(x)) \leq 2 \}$

Basic idea for constructing a DFA M_a accepting L_a: each state has 3 components to record $\#(a(x)), \#(b(x)), \#(c(x))$ in the input consumed so far.

$Q = \{ (i, j, k) \in \mathbb{N}^3 | i \leq 3, j \leq 2, 0 \leq k \leq 3 \}$

Start state: $(0, 0, 0)$

Set of accepting states: \{ $(3, j, k) \mid 0 \leq j, k \leq 2 \}$
1-step transition function $s: Q \times \{a, b, c\} \rightarrow Q$ is defined as:

$$s((i, j, k), a) = \begin{cases} (i+1, j, k) & \text{if } i \leq 2 \\ (i, j, k) & \text{if } i = 3 \end{cases}$$

$$s((i, j, k), b) = \begin{cases} (i, j+1, k) & \text{if } j \leq 1 \\ \text{fail} & \text{if } j = 2 \end{cases}$$

$$s((i, j, k), c) = \begin{cases} (i, j, k+1) & \text{if } k \leq 1 \\ \text{fail} & \text{if } k = 2 \end{cases}$$

For all $i, j, k \in \{a, b, c\}$, $s(\text{fail}, d) = \text{fail}$.

A DFA M_b accepting L_b is similar.

A desired FA accepting $L_a \cup L_b$ is:

```
start \rightarrow (q_0) \xrightarrow{\varepsilon} M_a \xrightarrow{\varepsilon} M_b
```

(c) Given that an FA M accepting L (without loss of generality, we may assume that M has one accepting state q_{accept}), we construct an FA M' accepting half (L).

The basic idea is that M' keeps track of two states in M (using two coordinates/track in a state of M').
For each input symbol read in M', M' uses first coordinate/make to simulate M on that symbol.

(At the same time, M' simulates the backward simulation starting at q_{accept} in M.)

Simultaneously, M' uses second coordinate/make to simulate M backwards on a guessed symbol.

M' accepts on input x iff the forward simulation (on x) and the backward simulation (on a guessed y, $|y|=|x|!$) are in a common state of M.

Formally, assume that NFA $M = (Q, \Sigma, \delta, q_0, q_{accept})$ accepts L.

Construct an NFA $M' = (Q', \Sigma, \delta', q'_0, Q_{accept})$ as follows: $Q' = Q \times Q$, $q'_0 = (q_0, q_{accept})$, $F' = \{(q, q) | q \in Q \}$, and $\delta' : Q' \times \Sigma \to Q'$ is defined as:

$\delta'(p, q) \in Q' \iff q_0 \in \delta(p, a)$ and $\exists b \in \Sigma, q \in \delta(s, b)$.

$\delta'(p, q), a = \{ (r, s) \in Q \times Q | r \in \delta(p, a) \text{ and } \exists b \in \Sigma, q \in \delta(s, b) \}$.

Forward Simulation

Backward Simulation

Guessed Symbol
Problem 3. (Similar to Homework 1, problem 9)

Let \(L = \{ x \in \{0,1\}^* \mid x^r = x^3 \} \)

We show that there do not exist any DFA accepting \(L \).

Suppose the contrary that \(L = L(M) \) for some DFA \(M = (Q, \Sigma, \delta, q_0, F) \), where \(Q = \{ q_1, q_2, \ldots, q_n \} \) for some positive integer \(n \).

Consider the sequence of strings

\[
\begin{align*}
x_1 &= 0^n \\
x_2 &= 0^{n+1} \\
&\vdots \\
x_n &= 0^{n+n} \\
x_{n+1} &= 0^{n+n+1}
\end{align*}
\]

By Pigeonhole Principle, there exist \(i, j \in \{1, 2, \ldots, n+1\} \) such that \(i \neq j \) and the two inputs \(0^i \) and \(0^j \) cause two identical versions of \(M \), starting from \(q_1 \), to

be in the same state, say \(p \in Q \).

\[
\text{start} \xrightarrow{0^i} q_1 \xrightarrow{0^n} q \xrightarrow{0^{n+n}} q \xrightarrow{0^{n+n+1}} p
\]

Now, consider suffixing \(1 \cdot 0^i \) to augment the two input strings \(0^i \) and \(0^j \) to \(0^i 1 \cdot 0^i \) and \(0^i 1 \cdot 0^j \), respectively, and notice that:

- The augmentation \(1 \cdot 0^i \) causes the two versions of \(M \\
 0^i 1 \cdot 0^j \) to a common state \(p' \), as well. (Why?)

But \(\ldots \)
The input string $0^i 1^j 0^i$ is a palindrome ($\in L$), so M should accept $0^i 1^j 0^i$, i.e., $p' \in F$. But, the input string $0^i 1^j 0^i$ (i.e., $i+j$) is not a palindrome ($\notin L$), so M should reject $0^i 1^j 0^i$, i.e., $p' \notin F$, a contradiction!
Problem 6

Basic idea of constructing a DFA N is that it essentially mimics the behavior of M, but in addition, N keeps track of a bit that indicates if the state r has been visited.

The bit starts out as 0, one is flipped to 1 in the event that r is reached. The bit is never flipped back once it turns to 1.

The accepting states of N are of the form $(1, q)$ where $q \in F$ as they indicate that M is in an accepting state (q, F) and the state r has been visited.

$$N = \left(\{0, 1\} \times \mathcal{Q}, \Sigma, \delta', (0, q_0), (1, q) \mid q \in F \right)$$

where

$$\delta' : (\{0, 1\} \times \mathcal{Q}) \times \Sigma \rightarrow (\{0, 1\} \times \mathcal{Q})$$

defined as:

$$\delta'(q, a) =\begin{cases} (0, \delta(q, a)) & \text{if } \delta(q, a) \neq r \\ (1, \delta(q, a)) & \text{if } \delta(q, a) = r \end{cases}$$

and

$$\delta'((1, q), a) = (1, \delta(q, a))$$
Problem 5
Try it again.
Careful computation of ε-closures.

Problem 6
Same as textbook Problem 1.38

1.38 Use the same construction given in the proof of Theorem 1.39, which shows the equivalence of NFAs and DFAs. We need only change F'', the set of accept states of the new DFA. Here we let $F'' = \mathcal{P}(F)$. The change means that the new DFA accepts only when all of the possible states of the all-NFA are accepting.