Section 5.4 (continued) Repeated Richardson extrapolation.

We use the previous example in numerical derivative to explain the repeated Richardson extrapolation.

Instead of using Taylor polynomial in approximating $f'(x)$ (like one-sided and two-sided approximations done in the previous class notes), we can consider Taylor series:

$$f(x+h) = f(x) + \frac{f(x)}{1!} h + \frac{f'(x)}{2!} h^2 + \frac{f''(x)}{3!} h^3 + \cdots$$

Can view this as:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \epsilon_h h + \epsilon_h^2 h^2 + \epsilon_h^3 h^3 + \cdots$$

$$u\quad \text{true value}$$
$$u^*\quad \text{approximation}$$
$$\epsilon(u^*) = u - u^*$$
$$\text{error (approximation)} = C_1 h + C_2 h^2 + C_3 h^3 + \cdots$$

In fact, we can view (1) in an inductive manner later.
Recall, bottom of page 10, previous class notes:

\[
\text{true value} = \underbrace{\text{approximation}}_{\text{like } f'(x)} + \underbrace{\text{error}}_{\text{like } f(x+h)-f(x)} \sim K \cdot h_k
\]

depending on \(h \)

Then, by iterating the sequence

\[\begin{align*}
& h_0, \quad h_1 = \frac{1}{2} h_0, \quad h_2 = \frac{1}{2} h_1, \quad h_3 = \frac{1}{2} h_2, \quad \ldots \to 0 \\
& x + h_0, \quad x + h_1, \quad x + h_2, \quad x + h_3, \quad \ldots \to x
\end{align*}\]

Do \(D_0, D_1, D_2, \ldots \to D \)

(2)

\[D = D_0 + \frac{D_n - D_{n-1}}{2^{n-1}}\]

for example, \(D_n = \frac{f(x + h_n) - f(x)}{h_n} \) for \(n = 0, 1, 2, \ldots \)

Now, we combine (1) and (2) in an inductive manner (or \(h_k \))
Assume (original) approximations

\[D_0, D_1, D_2, \ldots \]

\[D_n = \frac{f(x + nh) - f(x)}{h} \]

Viewing (1) as true value = approximation + \(c_1 h \), \((c_2 h^2 + \ldots) \)

So error = \(c_1 h \)

Then, viewing (1) as true value = approximation + \(c_2 h^2 \), \((c_3 h^3 + \ldots) \)

So error = \(c_2 h^2 \)

Then, viewing (1) as true value = approximation + \(c_3 h^3 \), \((c_4 h^4 + \ldots) \)

So error = \(c_3 h^3 \)
<table>
<thead>
<tr>
<th>n</th>
<th>D_n</th>
<th>D_n^*</th>
<th>D_n^{**}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>D_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D_1</td>
<td>D_1^*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D_2</td>
<td>D_2^*</td>
<td>D_2^{**}</td>
</tr>
<tr>
<td>3</td>
<td>D_3</td>
<td>D_3^*</td>
<td>D_3^{**}</td>
</tr>
<tr>
<td>4</td>
<td>D_4</td>
<td>D_4^*</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$D_n = \frac{f(x + h_n) - f(x)}{h_n}$

$n = 0, 1, 2, \ldots$

$D_n^* = D_n + \frac{D_n - D_{n-1}}{2^1 - 1}$

$D_n^{**} = D_n + \frac{D_n^* - D_{n-1}^*}{2^2 - 1}$

$n = 1, 2, \ldots$

$D_n^{***} = D_n + \frac{D_n^{**} - D_{n-1}^{**}}{2^3 - 1}$

$n = 2, 3, \ldots$
Example 5.4-2:

Compute the triangular Richardson table for the above example. Use $h_0 = 0.1$, so that $h_i = 0.1, 0.05, 0.025, \ldots$. As explained above, the values of k_j for this example are $k_j = 1, 2, 3, \ldots$. The triangular Richardson table is then

\[
\begin{array}{cccc}
0.497363752535389 & 0.519044815722409 & 0.529728186647875 & 0.535029119429193 \\
0.540725878909429 & 0.540411557573841 & 0.540306783794645 & 0.540330034210510 \\
0.540302859736233 & 0.54032299179317 & \\
\end{array}
\]

The errors in these values are

\[
\begin{array}{cccc}
0.429E-0 & -0.424E-3 & -0.109E-3 & -0.277E-4 \\
0.213E-1 & & -0.448E-5 & \\
0.106E-1 & & & -0.554E-6 \\
0.527E-2 & & & 0.669E-8 \\
\end{array}
\]

Note that the errors decrease by a factor of about 2 going down the first column, by a factor of about 4 going down the second column, and by a factor of about 8 going down the third column. Note also the greatly decreasing errors going across each row. Richardson extrapolation has improved the accuracy spectacularly.

\[D \approx 0.590302\ldots\]

\[
0.318(E^{-8})
\]

- Stabilized due to floating-point restriction on the underlying FPN5

- Stabilized when $h = \frac{1}{2^3} h_0 = 0.1 \times 2^{-2} = 2^{-3}$
Conceptually: a problem P is ill-conditioned if, in general, a small change to a typical problem instance P, say, small ΔP, can produce a large relative change in the exact mathematical solution S,

$$\frac{\Delta S}{S}$$

"vague" — concrete examples in mathematics later.
ill-conditioning of a problem P is an (intrinsic) property of P, not due to any algorithm solving P.

An algorithm solving P may be limited by restrictions of the underlying FNS, algorithms that cause subtractive cancellation, etc.

The problem is "sensitive" to changes to its problem instances.

Condition number (P) is defined as:

$$ \text{maximum} \left\{ \left| \frac{\text{relative change to } S}{\text{relative change to } P} \right| : P \in P \right\} $$

"large" $\rightarrow \infty$

Condition number (P)

not ill-conditioned well
"empirically", for problem P with condition number K (\[K \approx \max \frac{\text{relative change in solution}}{\text{relative change to problem instance with small } \epsilon} \mid |P(\epsilon)| \])

FPNS

with the "best" possible algorithm solving P.

It is expected to lose up to $\log_b(K)$ digits of precision due to "unavoidable subtractive cancellation".

Example: $K = 1000$,

$b = 10, \quad \log_b K = 3$

Expect to lose up to 3 decimal digits of precision/accuracy in the best possible computation due to unavoidable subtractive cancellation.

Or, if we have a small change in a problem instance like changing the "last digit" of a problem instance by 1,

then, approximately, the last $\log_b K$ digits of the corresponding solution will change (in some component(s) of any best possible algorithm/computation).
Problem P

1. Unconditioned
 - K is large

2. Conditioned
 - Small

 "Stable Algorithm"

 "Unstable Algorithm"

 Loss of accuracy in performance

 - Small training data

 - Large training data

 - More information
Section 6.2 Condition Number of Function Computation

Real-valued function \(f \)
real argument \(x \in \text{domain}(f) \)

Problem: compute \(f(x) \)
(problem instance: the input/argument \(x \))
(not the function \(f \))

Condition number (compute \(f \) at argument \(x \))
\(\text{cond}(f, x) \)

By the definition in Section 6.1 earlier:
\[
\text{cond}(f, x) = \left| \frac{\text{relative change in } f(x)}{\text{relative change in } x} \right| \quad \text{with small } \Delta x
\]

\[
= \left| \frac{f(x+\Delta x) - f(x)}{f(x)} \right| \quad \text{when } \Delta x \to 0
\]

\[
= \left| \frac{\frac{f(x+\Delta x) - f(x)}{\Delta x}}{\frac{x}{f(x)}} \right| \quad \text{when } \Delta x \to 0
\]

\[
= \left| f'(x) \cdot \frac{x}{f(x)} \right|
\]
Remarks:

1. \(\text{Cond} (f, x) \) large \(\sim \) combination:
 - large \(f'(x) \)
 - large \(x \)
 - small \(\text{fix} \)

2. In a FPNS radix-\(b \):
 a change to the last digit of \(x \) \(\Rightarrow \) last \(\log_b (\text{cond} (f, x)) \) bits in \(x \) will change.

Condition:
\[
\text{Cond} (f, x) = \left| \frac{\Delta f(x)}{f(x)} \right| = \left| \frac{\Delta x}{x} \right|
\]

Small \(f(x) \): \(\frac{\Delta f(x)}{f(x)} \) (large)

Large \(f(x) \): \(\frac{\Delta x}{x} \) (large)

large \(x \): \(\frac{\Delta x}{x} \) small
Example 1: \(f = \sin (\text{ sine function}) \)

\(x = \frac{\pi}{2} \)

\[
\text{Cond} (f, x) = \left| \frac{f'(x)}{f(x)} \right| = \frac{\sin x}{\cos x}
\]

\(f'(x) = \cos x \)

\[
= \left| \cos x \cdot \frac{x}{\sin x} \right|_{x = \frac{\pi}{2}} = 0
\]

perfectly well-conditioned!

\[
\text{Cond} (f, x) = \left| \frac{\Delta f(x)}{\Delta x} \right|_{\Delta x \to 0} = 0
\]

so, regardless of \(\frac{\Delta x}{x} \), \(\frac{\Delta f(x)}{\Delta x} = 0 \)

(i.e., \(\Delta f(x) = 0 \) "flat"

\(f'(\frac{\pi}{2}) = 0 \)

\(f(\frac{\pi}{2}) = \cos x \)

\(x = \frac{\pi}{2} \)
Example 2: \(f = \sin x \), \(x = 0 \)

\[
\lim_{x \to 0} \frac{f'(x) - \frac{x}{f(x)}}{x} = \lim_{x \to 0} \frac{\frac{df}{dx}}{f(x)} = \frac{f'(0) - \frac{0}{f(0)}}{0} = \frac{\cos 0 - \frac{0}{\sin 0}}{0} = \frac{1 - 0}{0} = \text{undefined}
\]

So, consider \(\lim_{x \to 0} \frac{\cos x \cdot \frac{x}{\sin x}}{x} \)

\[
= \lim_{x \to 0} \left(\cos x \cdot \frac{x}{\sin x} \right) = \cos 0 \cdot \frac{x}{\sin x} = 1 \cdot \frac{x}{\sin x} = \frac{1}{\cos 0} = 1
\]

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

well-conditioned

\[
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) = \cos x
\]

\[
f'(0) = 1
\]

\[
f(0) = \sin x
\]
Example 3: \(f = \sin \quad x = \pi \)

\[
\text{cond}(f, x) = \left| \frac{f'(x)}{f(x)} \right| = \frac{\cos x}{\sin x}
\]

\[
= \left| \cos \pi \cdot \frac{\pi}{\sin \pi} \right| = \left| -1 \cdot \frac{\pi}{0} \right| \to \infty
\]

\(f = \sin \) ill-conditioned

\(x = 0 \)

\[
\text{cond}(f, 0) = \left| \frac{f'(0)}{f(0)} \right| = \left| \frac{0}{\sin 0} \right| = +1
\]

indeterminate form

"saved" by \(x = 0 \)

\[
\text{cond}(f, \pi) = \left| \frac{f'(\pi)}{f(\pi)} \right| = \left| \frac{\pi}{\sin \pi} \right| = \left| \frac{\pi}{0} \right| = +\infty
\]

not indeterminate form

why the difference?

\[\text{cond}(f, 0) = +1 \quad \text{well-conditioned} \]
\[\text{cond}(f, \pi) = +\infty \quad \text{ill-conditioned} \]