Robotics

Chapter 25-a
Robots

- Robots are becoming more and more used in various applications:
 - space exploration
 - manufacturing
 - reconnaissance and aerial inspection
Robot Types

- **Manipulators** - robot arms
 - Manufacturing, automobile assembly
 - Surgeon assistants
 - Space station / space shuttle

- **Mobile robots**
 - Unmanned Land Vehicles (ULV)
 - Unmanned Air Vehicles (UAV)
 - Autonomous Underwater Vehicles (AUV)
 - Planetary Rovers

- **Humanoid robots**
 - Mimics a full human or human torso
Robot Sensors

Example: Laser range finder
Robot Sensors

- Passive sensors - simply observe environment
 - Cameras
 - Microphones
 - Whiskers
 - Tactile sensors
 - GPS receivers

- Active sensors - send out energy into environment
 - Sonar
 - Radar
 - Laser range finders / Lidar

- Proprioceptive sensors - sense robot state
 - Shaft decoders - count motor revolutions
 - Odometers - count wheel turns
 - Inertial sensors (gyroscopes, accelerometers)
 - Force and torque sensors
Robot State

• Effectors
 - “The means by which robots move and change [body shape]”
 - Examples: revolute joints, prismatic joints

• Degrees of Freedom (DOF)
 - 1 DOF for each direction that the robot (or its effectors) can move
 - Example: A UAV has 6 degrees of freedom, \((x, y, z)\) plus \((pitch, roll, yaw)\)

• Kinematic state (pose)
 - Position and orientation, but not speed

• Dynamic state
 - Includes pose plus velocity for each pose dimension.
Configuration of robot specified by 6 numbers

\[\Rightarrow 6 \text{ degrees of freedom (DOF)} \]

6 is the minimum number required to position end-effector arbitrarily.

For dynamical systems, add velocity for each DOF.

(Q) Why 6 degrees of freedom for arbitrary positioning?
Holonomic vs. Non-Holonomic Robots

- Holonomic robot - as many controllable degrees of freedom as effective degrees of freedom.
- A car has more DOF (3) than controls (2), so it is non-holonomic. It cannot transition between all adjacent configurations.

(Q) Give an example of how a car is not holonomic.

(Q) What operations does this make difficult?
Robot Perception

- Localization - Compute current state, including position, orientation, and pose, given a sequence of observations and actions:

\[X_{t+1} = X_t + A_t - Z_t - Z_{t-1} \]

- \(X_t \) = environment and robot state at time \(t \)
- \(Z_t \) = observation at time \(t \)
- \(A_t \) = action taken at time \(t \), leading to state \(X_{t+1} \)

- \(P(X_t|z_{1:t}, a_{1:t-1}) = \) belief state at time \(t \)
 - based on all previous observations \((z_{1:t})\) and actions \((a_{1:t-1})\)

(Q) Why are we including all of the observations and actions? How do they help us?
Filtering

Filtering computes a new belief state for time $t + 1$ from a belief state at time t and a new (possibly empty) action a_t and a new observation z_{t+1}:

$$P(X_{t+1}|z_{1:t+1}, a_{1:t}) = f(a_t, z_{t+1}, P(X_t|z_{1:t}, a_{1:t-1}))$$

Note that X_t is not a single state. Conceptually, it is a probability distribution over many states.

(Q) In practice, how should the belief state (X_t) be represented?
Filtering

- $f(\cdot)$ computes X_{t+1} by integrating over the belief-action-percept space:

$$P(X_{t+1}|z_{1:t+1}, a_{1:t}) = \int_{X_t} f(a_t, z_{t+1}, P(X_t|z_{1:t}, a_{1:t-1}))$$

$$P(X_{t+1}|z_{1:t+1}, a_{1:t}) = \alpha P(z_{t+1}|X_{t+1}) \int_{X_{t}} P(X_{t+1}|x_t, a_t)P(x_t|z_{1:t}, a_{1:t-1})dx_t$$

- $P(X_{t+1}|z_{1:t+1}, a_{1:t}) =$ belief state at time $t+1$
- $\alpha =$ a normalization factor
- $z_{t+1} =$ percept at time $t+1$
- $X_{t+1} =$ state at time $t+1$
- $P(z_{t+1}|X_{t+1}) =$ prob. of observing z_{t+1} given X_{t+1}
- $a_t =$ action taken at time t
- $x_t =$ possible state at time t
- $P(X_{t+1}|x_t, a_t) =$ prob. of being in state X_{t+1} given x_t and a_t
- $P(x_t|z_{1:t}, a_{1:t-1}) =$ prob of being in state x_t at time t

- Notice how the equation is essentially based on Bayes’ rule.
Kalman Filter

• A Kalman filter represents the belief state as a Gaussian with a particular mean and covariance.

• The Gaussian moves over time based on actions and observations.

(Q) Why use a Gaussian representation?
• Suppose we are tracking something moving at velocity v_t in direction θ, but that the position x_t, velocity v_t and direction θ are uncertain.

\[
\hat{X}_{t+1} = X_t + \begin{pmatrix}
v_t \Delta t \cos \theta_t \\
v_t \Delta t \sin \theta_t \\
\omega_t \Delta t
\end{pmatrix}
\]
Tracking with a Kalman Filter

- Assume Gaussian noise in motion prediction, sensor range measurements

\[
P(X_{t+1}|X_t, v_t, w_t) = N(\hat{X}_{t+1}, \Sigma_x)
\]

- \(N(\hat{X}_{t+1}, \Sigma_x)\) = gaussian distribution with mean \(\hat{X}_{t+1}\) and covariance \(\Sigma_x\).

- Since \(v_t\) and \(w_t\) are assumed to vary in a gaussian fashion, the result is another gaussian with updated covariance.

- Even if the result is not an exact Gaussian, we can approximate the result by a Gaussian, preserving the representation (called an extended Kalman filter).

(Q) Why would it be okay to use a Gaussian if the transition model does not actually produce Gaussians?
Sensor Model With Landmarks

- If the robot senses a landmark with known position, we can estimate the robot position based on the landmark.
- If the estimate based on the landmark is better than the current belief state (has smaller covariance), we can replace the belief state by it.