
Targeting the Most Important Words
Across the Entire Corpus in NLP

Adversarial Attacks

Reza Marzban(B) , Johnson Thomas , and Christopher Crick

Computer Science Department, Oklahoma State University, Stillwater, OK, USA
reza.marzban@okstate.edu

Abstract. In recent years, deep learning has revolutionized many tasks,
from machine vision to natural language processing. Deep neural net-
works have reached extremely high accuracy levels in many fields. How-
ever, they still encounter many challenges. In particular, the models are
not explainable or easy to trust, especially in life and death scenar-
ios. They may reach correct predictions through inappropriate reasoning
and have biases or other limitations. In addition, they are vulnerable to
adversarial attacks. An attacker can subtly manipulate data and affect
a model’s prediction. In this paper, we demonstrate a brand new adver-
sarial attack method in textual data. We use activation maximization
to create an importance rating for each unique word in the corpus and
attack the most important words in each sentence. The rating is global
to the whole corpus and not to each specific data point. This method
performs equal or better when compared to previous attack methods,
and its running time is around 39 times faster than previous models.

Keywords: Adversarial attacks · Natural language processing · Deep
learning · LSTM · Transformers · CNN

1 Introduction

Machine learning with deep learning models has achieved impressive advances,
empowered by the era of big data and the proliferation of cheap computing
power. Such models have reached or even surpassed human expert performance
in a number of tasks (e.g. machine vision and natural language processing).
However, despite their accuracy and performance, many other shortcomings and
limitations must be improved. The most important limitation of deep learning
models is that they are like black boxes and are not interpretable. As a result,
we may not trust them in life and death situations. In addition, we have seen
that they are extremely vulnerable to adversarial attacks. If an attacker creates
adversarial examples by adding a little well-chosen noise to an input, although
humans still classify them appropriately, the models can be deceived and classify
them incorrectly, potentially leading to catastrophic results.

Adversarial attacks come in two flavors: white box and black box attacks.
In a white box attack, the attacker has access to the information, details and
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weights of the attacked model. Conversely, in the black box context, the attacker
does not have any internal model information. Obviously, in real life scenarios,
black box attacks are more realistic. There have been many works on adversarial
attacks and creating defense mechanisms against them. Most have concentrated
on machine vision and image processing, as it is much easier to visualize and
compare images in a 2-dimensional format, whereas in the Natural Language
Processing (NLP) field, there has significantly less work, as it is much more
challenging to visualize and compare textual data. NLP is the field of allowing
machines to communicate in humans’ languages, and many tasks, from sentiment
analysis to natural language generation, fall under its umbrella.

Adversarial attacks in NLP consist of two phases: choosing the words to
attack and choosing the technique of manipulation or perturbation. There are
many different word-level perturbation techniques in NLP (e.g. replace, delete,
add, swap); these may seem different to humans but all of them result in the
same behavior in NLP models. They will create a noisy word that is not in the
model dictionary, and the model will assign it an ‘unknown’ label. Most existing
adversarial attacks in NLP choose their targeted words to attack one input at a
time, where each attack is applied to the most important words for a particular
input instance. While such a technique can be successful, it requires access to
the texts to be attacked in advance, in order to train the attacker model. They
cannot attack brand new texts even when they are from the same source and
domain.

In this paper, we have created a brand new black box adversarial attack tech-
nique that uses and trains a Convolutional Neural Network (CNN) on a portion
of a dataset. It then analyses the CNN filters to establish a global importance
rate for all words in the corpus using activation maximization. These impor-
tance rates apply across the model and reflect the overall model logic, rather
than being local to a single data point. These importance rates can be used to
attack even examples that have never been seen before by targeting the most
important words. Our technique has equal or better performance in comparison
to previous techniques in various tasks, and it is much faster as it does not need
to analyze each and every new data point to develop an optimal attack.

We tested our adversarial attack on two benchmarks: a sentiment analysis
(binary classification) and a tagging dataset with 20 possible classes. The attacks
on these datasets were evaluated on three different models to see if the attack
technique is generalizable to multiple architectures. We used Long Short Term
Memory (LSTM), Convolutional Neural Networks (CNN), and attention-based
Transformers. Performance was equal to previous techniques in the sentiment
analysis task and much better in the tagging task. When we are attacking 40
words per text, our model reduces the test accuracy 6% more than previous
techniques on average. In addition, in both tasks, our technique is much faster
than the previous versions. Our technique, applied to a forty-thousand-element
dataset, takes 164 s, while the baseline comparison model takes 6,323 s, a 39-fold
improvement.
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2 Related Works

NLP is a subfield of Artificial Intelligence (AI) that enables us to interact with
computers in human languages [4,7,8]. To apply standard deep learning archi-
tectures to NLP, textual data must be transformed into an amenable numerical
format. There are multiple ways of doing this, such as a one-hot encoder or
n-gram representation, but by far the most common approach is to use the
Word2Vec [17] algorithm. This creates a custom-length vector that represents
the semantic meaning of a particular word, and attempts to reflect the relation-
ship of words with each other. Word2Vec mappings can be trained from scratch,
but it is also common to use one of the available pre-trained word representations
like Glove [18].

After preprocessing texts, and transforming them into numerical vectors, the
data can be fed into a deep learning model. There are various famous model
architectures that work well on NLP tasks. The first natural choice is LSTM
[9] which is an advanced version of a Recurrent Neural Network (RNN). It is
designed with time-series data in mind, and it has an internal memory. Accord-
ing to its gate weights, it will decide what to remember and what to forget.
Another famous deep learning architecture is the CNN. We know that CNNs
have revolutionized image processing tasks, but CNNs can also be applied to
textual data [10–12,21]. Yin [22] compared RNNs and CNNs on various NLP
tasks and studied the performance of each. Activation Maximization (AM) is a
method that can be applied on CNN models; some research has focused on creat-
ing an importance rate for each unique word in a corpus using AM on CNNs by
analyzing the convolution filter weights [15]. We utilize this technique to create
an adversarial attack method.

In 2017, a new generation of NLP models appeared, starting with Vaswani’s
first Transformer attention-based architecture [19]. Instead of remembering an
entire text, it assigns an attention weight to each token, which allows it to pro-
cess much longer texts. The attention technique enabled the creation of much more
advanced transformer-based models like BERT [5], RoBERTa [13], and GPT-3 [3].

The various deep learning models have contributed to rapid improvement in
NLP task performance, but they also have created challenges. To start with, deep
learning models are not intuitive or explainable. They also have some limitations;
for instance, most NLP models can accept only limited sequence lengths. Some
authors have tried to overcome this limitation [16]. In addition, they can easily
be manipulated by adversarial examples. Adversarial attacks have recently been
a major research focus in machine vision [1,2], as it is very easy for humans to
recognize patterns in two dimensions. However, very few have worked on NLP
adversarial attacks. The same adversarial attacks techniques can be applied on
textual data as well [20,23]. Gao [6] created a technique called WordBug that
analyses each and every input to find the most important words in that text,
then targeting them in an attack. They have used a temporal score extracted
from a bidirectional LSTM to detect important words in each text.
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In this paper, our contribution offers a similar technique that is much faster,
and its performance is either equal or better than WordBug. We evaluate our
algorithm on two datasets with different levels of difficulty: an IMDb sentiment
analysis dataset [14] and a Stack Overflow dataset with 20 possible tags or
classes.

3 Technical Description

3.1 Benchmark Datasets

In order to test our approach, we chose and used two datasets with different tasks.
The first one is the IMDb movie review dataset,1 which is a binary classifcation
task for sentiment analysis. The second one is the Stack Overflow dataset,2 in
which each question is tagged with one of 20 possible tags. Obviously the first
task is easier for models as it contains only two classes.

Our preprocessing step was very straightforward. We converted everything to
lower case and dropped all stop-words and hapax legomena (words that appear
only once in an entire corpus). We also dropped all special characters and numeri-
cal values. After preprocessing, the Stack Overflow dataset contained 40,000 rows
and around 28,000 unique words. The IMDb dataset contained 42,928 rows and
around 23,000 unique words. We split each of them into training and test sets.

3.2 Choosing and Targeting Words to Attack

The attack sequence begins by targeting particular words, hopefully selected
to have the greatest possible effect on the model’s performance and accuracy.
The mechanism for choosing words to attack is the core comparison between
techniques.

WordBug. Gao’s technique [6] created a bidirectional LSTM and trained the
model on each sentence to be attacked, identifying the most important words
in each sentence in turn. The approach used three scores: Temporal, Temporal
Tail and combined (which is the mean of the two previous scores). In order to
create the Temporal score and Temporal Tail score of the ith word in a sentence,
they used Eqs. 1 and 2, in which n is the number of tokens or words in each
data point, x [1 : n] are the n words in each data points and F () is a function
that maps input words to the probability of belonging to the actual class using
the bidirectional LSTM. They observed that their combined score outperformed
other approaches.

TemporalScore(xi) = F (x1, x2, ..., xi−1, xi) − F (x1, x2, ..., xi−1) (1)

1 https://ai.stanford.edu/∼amaas/data/sentiment/.
2 https://console.cloud.google.com/marketplace/product/stack-exchange/stack-

overflow.

https://ai.stanford.edu/~amaas/data/sentiment/
https://console.cloud.google.com/marketplace/product/stack-exchange/stack-overflow
https://console.cloud.google.com/marketplace/product/stack-exchange/stack-overflow
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TemporalTailScore(xi) = F (xi, xi+1, xi+2, ..., xn) − F (xi+1, xi+2, ..., xn) (2)

The advantage of this technique is that each text is studied and produces
the most important words local to that specific text. However, it has two big
disadvantages: it needs to be trained on each and every sentence to be attacked,
and it cannot be applied to other sentences even from the same context. It is also
very slow, as it needs to run the LSTM m ∗ n times in which m is the number
of rows and n is the number of tokens in each one.

Activation Maximization. This method [15] uses a 1-dimensional CNN,
trains on a subset of data, and uses the CNN layer filters to find the impor-
tance rate of all unique words in the corpus based on Eq. 3.

importance =

⎧
⎨

⎩

F∑

f=1

S∑

s=1

I∑

i=1

|wi ∗ Filterf∗s∗i| |w ∈ Corpus, F ilter

⎫
⎬

⎭
(3)

In Eq. 3, F is the number of filters in the CNN layer, S is the size of the
filters, and I is the embedding length. w is a word embedding vector with a
length of I. Corpus is a matrix of our entire word embedding of size m ∗ I, in
which m is the count of unique words in our corpus dictionary. Filter is a 3-D
tensor of size F ∗ S ∗ I. This equation calculates the sum of activations of all
filters caused by a single word.

The advantage of this method is that it provides a general importance rate
applicable to all sentences that come from the same source and distribution. As
a result, we can use its insight on new never-before-seen sentences. The other
advantage is its speed, as it needs only to train the CNN model once, for a couple
of epochs, and then its filters can be used (via Eq. 3 to create the importance
rate. The downside of this method is that the globally important words may or
may not be the best option for each sentence.

Choosing Words in Each Sentence. After using one of the above models,
we target the top t words in each sentence that have the highest importance
rate and attack them. In our experiments we used different following values for
t: 0, 10, 20, 40. When the t = 0, it means we are not attacking at all; this is a
baseline performance for comparison with our attacks. We tested the attacks on
three different models to determine whether these techniques are applicable on
all models. We used an LSTM, a CNN and a Transformer model to see how the
different attacks behave on each.

3.3 Word Perturbation

After selecting the words to attack, a word manipulation or perturbation method
must also be chosen. There are four main word attack methods in NLP: replace,
delete, add, swap. To human observers, these might have different effects, but all
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of these methods have the same result, to create a noisy word that is not in the
NLP model dictionary. Such words end up with an ‘unknown’ label assigned by
the model. We used swap in this paper; we randomly chose two adjacent middle
character in each targeted word and swapped them. Examples are presented in
Table 1. Note that, for purposes of simplifying the presentation, a very short
subset of texts is presented in this table. In the original data, the texts are much
longer, averaging around 200 words or tokens in each.

Table 1. Word manipulation and perturbation (with t = 2)

Text before the perturbation Text after the perturbation (with t = 2)

The movie was extremely boring The moive was extremely broing

How can i import csv file in python How can i improt csv file in pyhton

3.4 Comparison of Methods and Evaluation

In order to compare WordBug vs our Activation Maximization method, we tested
both on three brand new models created from scratch on our two benchmark
datasets. We used a CNN, an LSTM and a Transformer model, all of which were
built with basic, straightforward architecture. We trained all of these models
on the training set. As our attack method is a black-box adversarial attack, we
attacked only the test set (since the attack does not have access to the models’
information and details).

In the WordBug method, each text in the test set was analyzed and attacked
in turn, but in our Activation Maximization method, we fitted our importance
rate on a subset of texts and used it for attacking the test set as a whole. We
measured the run-time of both techniques while they were learning which words
to attack and compared them. In the next step we evaluated our attacks on
the three models we had trained, to observe the attack performance. In both
methods, we used swap as the word perturbation, and used 0, 10, 20, 40 for
our t.

4 Experimental Results

In the experiments, t is set to four different values: 0, 10, 20, 40. We also included
t = 0 which shows the baseline model without any inserted attack, so the effec-
tiveness of each adversarial attack method can be seen. We tested our three
models on two datasets (IMDb and Stack Overflow) with 3 different techniques
of attack: WordBug, Activation Maximization and random. In the random case,
t words are chosen at random to attack. In interpreting the attack performance,
a lower test accuracy means a more effective attack.
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4.1 Evaluation on IMDb

Fig. 1. Evaluation of attack methods in CNN on IMDb dataset

Fig. 2. Evaluation of attack methods in LSTM on IMDb dataset

Fig. 3. Evaluation of attack methods in transformer on IMDb dataset
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Figures 1, 2, and 3 show that, for the IMDb dataset in most cases, the WordBug
technique works slightly better than Activation Maximization but not signif-
icantly. On average, the WordBug attacks reduce the models’ accuracies less
than 1% more than the AM attacks.

Our results when using WordBug to attack the IMDb dataset differs from
Gao’s original results [6]. Ours is a precise implementation of the WordBug
attack, so the only potential reasons for this variation might be different prepro-
cessing steps or different LSTM architectural hyperparameters. However, for the
purposes of comparing WordBug and Activation Maximization, this difference is
immaterial. The same preprocessing steps and model hyperparameters are used
to compare the approaches fairly.

4.2 Evaluation on Stack Overflow

The Stack Overflow dataset task is much more complex than the naive Senti-
ment Analysis task in IMDb. The task requires classifying data into 20 possible
classes or tags, and the texts are much longer. As a result, Figs. 4, 5, and 6 show
that the Activation Maximization method is performing significantly better than
WordBug. On average, the Activation Maximization attack leads to a 4.6% lower
performance than WordBug’s.

4.3 Transfer Learning from IMDb to Stack Overflow

After comparing the performance of WordBug and Activation Maximization, we
show that in the AM method, we can train the attack on a subset of data and
then use it to attack newer never-seen-before data from the same distribution
and context. This performs equally well or better than WordBug, which has to
study every single input to be able to attack it.

Fig. 4. Evaluation of attack methods in CNN on Stack Overflow dataset
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Fig. 5. Evaluation of attack methods in LSTM on Stack Overflow dataset

Fig. 6. Evaluation of attack methods in transformer on Stack Overflow dataset

We also wanted to show whether the same transfer learning logic can apply
more generally, on new data but from a different context. In order to check this,
we trained our Activation Maximization attacker on the IMDb dataset and used
it on Stack Overflow. Figure 7 shows that the experiment does not support this,
as the performance is even worse than a random attack.
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Fig. 7. Evaluation of using IMDb importance rate extracted from IMDb dataset and
used to attack Stack Overflow dataset

4.4 Run Time Comparison

In addition to their effect on a model’s accuracy, another important factor in
adversarial attacks is the speed. We applied the attacks on corpora with different
sizes varying from 20 to 40,000 data elements and measured the time needed for
each method to train and choose the most important words to target.

Figure 8 shows that Activation Maximization is much faster than WordBug.
This is to be expected, as WordBug must analyze each word in each data element
one by one, while the Activation Maximization approach just trains a CNN model
for a couple of epochs and uses the resultant filters to identify globally important
words. With a corpus size of 40,000, Activation Maximization is 39 times faster
than WordBug.

(a) Linear (b) Logarithmic

Fig. 8. Runtime comparison of WordBug and Activation Maximization
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4.5 Results Analysis

We have demonstrated that the Activation Maximization approach is not only
much faster than WordBug, but that it is equally good or better in its attack
performance (depending on the task). In addition, Activation Maximization can
be used to attack new input without any need for further training, whereas
WordBug must be trained on each sentence prior to a successful attack. However,
we observed that this ability of Activation Maximization only applies to data
from the same context and distribution.

Both of these models are black-box attacks and do not have access to the
details of the attacked model. In WordBug, the extracted information about most
important words is local to each specific input, whereas in Activation Maximiza-
tion, the attacker finds the most important words to target based on a global
evaluation of a large corpus.

5 Conclusion and Future Work

Our new Activation Maximization adversarial attack has many benefits: it is
significantly faster, its performance is equal to or better than WordBug, and it
can be used on new inputs (from the same context) without any further training.
Our attack method is a black box attack which means it does not need access to
the structure or weights of an attacked model. Developing these kinds of effective
and efficient attacks will enable us to evaluate new models to find their blind
spots.

Our future work involves upgrading the attack so that it can be used on
other contexts as well through transfer learning. As a result, we may be able to
train an attacker without reference to a specific kind of data, and still effectively
attack many different kinds of data targets.
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