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ABSTRACT Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets.
While curated datasets can help, challenges remain regarding generalizability and real-world transfer.
Meanwhile, large-scale ‘in-the-wild’ video datasets have driven progress in computer vision using self-
supervised techniques. Translating this to robotics, recent works have explored learning manipulation
skills using abundant passive videos sourced online. Showing promising results, such video-based learning
paradigms provide scalable supervision and reduce dataset bias. This survey reviews foundations such
as video feature representation learning techniques, object affordance understanding, 3D hand and body
modeling, and large-scale robotic resources, as well as emerging techniques for acquiring robot manipulation
skills from uncontrolled video demonstrations. We discuss how learning from only observing large-scale
human videos can enhance generalization and sample efficiency for robotic manipulation. The survey
summarizes video-based learning approaches, analyzes their benefits over standard datasets, survey metrics
and benchmarks, and discusses open challenges and future directions in this nascent domain at the
intersection of computer vision, natural language processing, and robot learning.

INDEX TERMS Video, watching, robot manipulation, demonstration, imitation, reinforcement learning.

I. INTRODUCTION

In contrast to fields like computer vision (CV) and natural
language processing (NLP), where copious amounts of high-
quality and diverse datasets are available, the field of robotics
faces a significant limitation in the availability of such
datasets for various tasks. This scarcity of quality data has
hindered progress in robotics in multiple ways. To address
this challenge, researchers have proposed algorithms based
on techniques like few-shot learning [ 1], [2], [3] and multitask
learning [4], [5]. While these approaches show promise
in mitigating the data scarcity issue, they still rely on a
substantial amount of high-quality data for effective task
generalization.

Similarly, classical robot planning and manipulation meth-
ods often necessitate detailed modeling of the world and agent
dynamics, further limiting their transferability and generaliz-
ability. Despite efforts to employ deep reinforcement learning
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(RL) for motion planning [6], [7] and manipulation [8], [9],
these methods encounter challenges such as distribution shifts
and reductions in generalizability. Recent imitation learning
methods [10], [11], [12] based on Behavioral Cloning (BC)
[13] have also emerged as a potential solution to learning
manipulation skills from minimal demonstrations. However,
similar to their deep RL counterparts, these methods strug-
gle to learn manipulation skills in diverse and uncurated
datasets.

In recent times, significant strides have been made in
collating large-scale, high-quality datasets for diverse robotic
tasks [14], [15], [16], [17], [18], [19] akin to the impact of
the ImageNet dataset in the field of Computer Vision [20].
While this marks a positive step forward, these datasets
often exhibit limitations in their representativeness of real-
world environments, as they are typically collected in
controlled settings. Despite their advantages, these datasets
pose potential drawbacks, including limited generalizability,
biases [21], high costs, and ethical concerns regarding the
interactions of embodied agents with humans.
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In contrast, “in-the-wild” datasets have played a pivotal
role in the success of computer vision [22], [23], [24],
[25], [26], particularly with the rise of self-supervised
learning. In the realm of robotics, various works have
embraced this approach, training embodied agents to acquire
manipulation skills by learning from videos sourced from
platforms like YouTube. These endeavors have demon-
strated impressive performance improvements, showcasing
enhanced generalizability.

This paper provides a comprehensive exploration of video-
based learning methodologies, with a focus on addressing
fundamental challenges in vision-based robotic manipu-
lation. Specifically, we investigate the potential of these
methodologies to enhance the learning of generalizable skills,
mitigate biases, and reduce the costs associated with curating
high-quality datasets. Our contributions are threefold: (1) a
detailed review and analysis of the capabilities of current
approaches in various robotic tasks, (2) an overview of
some open-source resources and tools for video-based robot
manipulation learning to help researchers get started, and
(3) a discussion of current challenges and future directions
in the field. Our work focuses solely on vision-based
manipulation. We discuss navigation, locomotion, and non-
visual-based approaches only to provide a more broad
perspective. We commence by introducing and summarizing
the foundational components of learning from videos, and
then proceed to discuss current approaches for acquiring
manipulation skills through video-based learning.

In Section II, we delineate and discuss the pipeline
and essential components required for learning from video
data. Additionally, we present notable large-scale robotic
resources, including datasets and network architectures.
Section III delves into the current approaches for learning
from videos, categorized into five distinct groups, with a
thorough literature review under each category. Section IV
highlights the comparative analysis of the distinct categories
of approaches. We present in Section V an overview of
some open-source resources and tools used for video-based
manipulation skill learning. Finally, Sections VI and VII
summarize the existing challenges faced by researchers in
developing systems for learning manipulation skills from
videos, and propose potential research directions likely to
have a significant impact in this domain.

A. SCOPE OF THIS SURVEY

This survey specifically explores techniques for acquiring
robot manipulation skills through explicit learning from video
data. Discussions on learning manipulation skills from data
modalities other than videos or topics related to learning
robot navigation skills are not within the scope of this
article, though they may be briefly mentioned for a more
comprehensive perspective. While foundational resources
supporting this learning approach are touched upon, the
primary focus is on discussing the techniques, advantages,
and challenges associated with acquiring robust manipulation
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skills from video data. It is important to clarify that the
list of foundational resources provided is not exhaustive and
represents only the essential secondary components involved
in the learning process. To the best of our knowledge, this
survey is the first of its kind to explore the landscape of
learning robot manipulation skills specifically from video
data. Additionally, there is currently no existing work that
comprehensively surveys the learning of robot skills in
general, from videos, although many studies have surveyed
the broader fields of robot manipulation and robot learning
from demonstration.

B. RELATED SURVEYS

We examine survey articles already available on related
subjects to guide readers to additional papers focusing
on more specific topics. This serves the dual purpose of
offering references for further exploration and elucidating the
distinctions between this article and existing surveys.

In contrast to these prior surveys highlighted in Table 1,
our work is uniquely focused on the intersection of video-
based learning and robot manipulation. We systematically
review and compare methods across both imitation and
reinforcement learning that leverage video demonstrations
as a core component, encompassing advances in vision-
language models (VLMs), foundation models, and large-
scale data resources. By specifically addressing challenges,
generalization, and open questions in video-based manipula-
tion learning, our survey fills a notable gap in the literature
and provides a valuable reference for researchers seeking to
navigate this rapidly evolving subfield.

We summarize and compare the specific areas of focus of
these survey articles with ours in Table 1 below.

Il. FOUNDATIONS OF LEARNING FROM VIDEOS

Learning robot manipulation skills from videos is a complex
task that necessitates a comprehensive visual pipeline,
encompassing various objectives such as representation
learning, object affordance learning, human action recogni-
tion, and 3D hand modeling. In this section, we will delve into
these objectives in detail and explore some of the proposed
techniques for their execution.

A. REPRESENTATION LEARNING

Visual feature extraction forms the backbone of vision-
based robotics. Over time diverse representation learning
methods have emerged, each offering unique ways to capture
meaningful features from visual data. These approaches
broadly fall into two categories: those tailored for videos and
those applicable to both images and videos.

Video-centric representation learning focuses on modeling
temporal dynamics and multi-view consistency. For instance,
Time-Contrastive Networks (TCN) [35] use self-supervised
learning from multi-view videos to encode temporal changes
while remaining invariant to viewpoint differences. Building
on this idea, Domain-agnostic Video Discriminator (DVD)
[36] employs multitask reward learning, training a discrim-
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TABLE 1. A comparison of different aspects covered by existing surveys and our survey.
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inator to verify whether two videos depict the same task,
thereby extracting domain-invariant features.

Unsupervised approaches further extend these capabilities.
Wang and Gupta [37] leverage visual tracking as supervision,
aligning tracked patches across frames via a Siamese-
triplet loss to learn rich representations from unlabelled
web videos. While CNNs excel at spatial feature extraction,
temporal modeling often benefits from sequence models. For
example, [38] introduced an LSTM-based encoder-decoder
for compact video representations, supporting sequence
reconstruction and future prediction. Similarly, Dense Predic-
tive Coding (DPC) [39] learns spatio-temporal embeddings in
a self-supervised manner for tasks like action recognition.

Beyond spatial and temporal cues, some methods incor-
porate geometry and structure. Reference [40] proposed an
unsupervised framework for jointly estimating monocular
depth and camera motion using view synthesis as supervision,
inspiring later work on 3D scene understanding [41], [42],
[43]. Other methods, such as Contrastive Video Represen-
tation Learning (CVRL) [44], use contrastive learning to
align augmented views while differentiating unrelated clips,
producing robust spatiotemporal representations.

Moving toward general-purpose methods, recent research
targets representations transferable across images and videos.
Masked Modeling [45] showed that self-supervised pre-
training on real-world images can outperform traditional
ImageNet-based pretraining [20] in robotic manipulation
benchmarks. Extending this idea, [46] applied masked
autoencoders (MAE) to large-scale video data for visual
pretraining, integrating these frozen representations into
downstream control policies.

Finally, universal representations like R3M [47] combine
time-contrastive learning with sparse encoding from human
video datasets. Serving as a frozen perception module, R3M
enables efficient imitation learning across both simulated and
real-world robotic manipulation tasks.

Table 2 shows a concise summary of the comparison
between the approaches discussed.

B. OBJECT AFFORDANCE AND HUMAN-OBJECT
INTERACTION

A key step in enabling robots to acquire manipulation
skills from videos is understanding object affordances: the
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actionable properties of objects, through the lens of human
interaction. Over the years, research has progressed from
early hand-state analysis in large-scale internet videos to
increasingly sophisticated, multimodal, and context-aware
frameworks. This subsection charts the evolution of these
methods, highlighting their innovations and interconnections.

We begin with approaches that leverage large-scale,
unstructured human activity videos to uncover affordances.
For example, [48] extracts hand-state information from inter-
net videos, laying a foundation for understanding human-
object interaction at scale. Building on this, Hand-aided
Affordance Grounding Network (HAG-Net) [49] employs
hand cues from demonstration videos and a dual-branch
network for fine-grained localization of affordance regions,
improving the precision of affordance grounding.

The field then expands toward capturing functional under-
standing and temporal dynamics of affordances. The authors
in [50] introduce a generative model that grounds object
affordances by considering both spatial context and human
intention, while a related approach [51] models objects and
sub-activities as a Markov random field, addressing the
challenge of acquiring descriptive labels for sub-activities and
their corresponding affordances.

Learning from demonstration (LfD) videos is another
significant direction. Demo2Vec [52] focuses on reasoning
about object affordances using carefully curated demonstra-
tion videos, learning vector embeddings to predict interaction
regions and support both human and robot understanding.
In contrast, Vision-Robotics Bridge (VRB) [53] demonstrates
how affordance models trained on diverse, in-the-wild
internet videos can bridge the gap between human-centric
video data and the requirements of robotic applications.

The integration of depth data and multi-modal inputs has
further advanced affordance detection. AffordanceNet [54]
exemplifies this by introducing an end-to-end deep learning
method for identifying both objects and their affordances in
RGB-D images, effectively handling multiclass affordance
masks. Similarly, [55] reviewed the landscape of affordance
detection methods, underscoring the importance of under-
standing the full range of object affordances for real-world
robot intelligence. At the 3D level, [56] proposed semantic
labeling of 3D point clouds to improve object segmentation
and reduce uncertainty in manipulation, demonstrating that
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TABLE 2. Comparison of repr:

ive video-b

d visual representation learning methods for robot manipulation.

Method

Task Performance

Sample Efficiency

Generalization

Compute Cost

[

1

Effective for third-person
imitation; supports RL via
embedding similarity

Learns from multi-view
video; label-free but needs
synchronization

Generalizes across
views and agents with
consistent context

Lightweight CNN + metric
loss; training setup moder-
ately complex

Solves real-robot tasks us-
ing learned video rewards

Requires only a few robot
demos and 1 human video

Strong zero-shot
generalization
to new tasks and
environments

Moderate; uses discrimina-
tors with broad human video
data

Nearly matches ImageNet

Uses 100K videos and

Captures object-level
similarity; weak on
temporal cues

Siamese-triplet CNN; effi-
cient but needs large-scale
video processing

CNNs on VOC (52%  patch tracking; no labels
mAP) needed
[38] Predicts  future video  Requires many sequences;

frames; helps with action
recognition

less data-efficient

Weak on domain shift;
struggles with unfa-
miliar dynamics

Moderate; encoder-decoder
LSTM:s for temporal model-

ing

75.7% on UCF101; strong
for human action recogni-
tion

Avoids pixel prediction;
uses curriculum for better
efficiency

Robust to viewpoint
and appearance varia-
tion

3D-ResNet + GRU; heavier
than 2D CNNs but no recon-
struction loss

Effective depth and ego-
motion learning from
video

Self-supervised via view
synthesis; highly data-
efficient

Generalizes across
driving scenes;
handles occlusions

Dual CNNs for depth and
pose; warping increases
training cost

70.4% on Kinetics-600;
outperforms SimCLR and
ImageNet

Leverages contrastive loss
with smart augmentations

Temporal and spatial
robustness;  handles
distant clip variations

R3D-50 backbone; moder-
ate complexity with consis-
tent training speed

Solves motor control tasks;
up to 80% success

Pretrained on real-world
images; no labels or robot
data needed

Generalizes
tasks and robots

across

ViT-based MAE; costly pre-
training, efficient inference

81% success in real-world
robot tasks

Achieves strong results
with only 20-80 demos per
task

Generalizes across
tasks, robots, and
scenes

307M ViT encoder; high ini-
tial cost, efficient during de-
ployment

+20% over MoCo/CLIP on
12 tasks; 50%-+ success
from 20 demos

Learns from human
videos; effective with few
demos

Strong task, view, and
embodiment transfer

Sparse contrastive encoder;
efficient for downstream
control

incremental, multi-view merging can directly benefit manip-
ulation planning.

The scope broadens to include human-object relation-
ships and interaction recognition in video. The authors
in [57] employed transformer architectures for joint spatial-
temporal reasoning, while [58] leveraged hand localization
in egocentric videos to understand object affordances. H20
dataset was introduced in [59], enabling synchronized multi-
view RGB-D capture of two-handed object manipulation,
providing rich annotations for developing and benchmarking
new affordance-centric methods.

Moving from interaction recognition to grasp gener-
ation and segmentation, [60] highlights the consistency
between hand contact points and object regions, intro-
ducing objectives for self-supervised training of grasp
generation models. Reference [61] proposed a unified
network to simultaneously predict 3D hand and object
poses, model interactions, and recognize action categories
in egocentric video sequences. Meanwhile, [62] developed
a weakly supervised approach to segment hands and
hand-held objects from motion in a single RGB image,
leveraging motion-derived responsibility maps for network
training.
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Datasets play a pivotal role in advancing affordance
learning. The authors in [63] introduced a comprehensive
dataset with over 100K frames of hand-object interactions
and rich 3D annotations. In parallel, [64] used computer
vision to unify the identification of hand grip types, object
properties, and action categories from images, providing a
context-aware model of natural hand-object manipulation.

C. HUMAN ACTION AND ACTIVITY RECOGNITION

Recognizing human actions is essential for robots operating
in human environments, particularly for understanding object
affordances. Early work leveraged human action patterns
from videos to guide robotic perception and decision-
making [48], [49], [51], [65]. Building on this, [66] empha-
sized affordances over appearance, encoding object-hand
interactions as strings to capture functional properties more
robustly. To enable fine-grained recognition, [67] combined
appearance and motion cues through convolutional networks,
enhancing the discrimination of subtle action variations. For
automated object interaction analysis, Interaction Region
and Motion Trajectory prediction Network (IRMT-Net) [68]
jointly estimates interaction regions and motion trajectories
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from demonstrations, reducing reliance on manual guidance
and improving adaptability across systems.

Recent advances include unsupervised and weakly super-
vised methods. Reference [69] proposed a framework
that segments actions into sub-activities using alternating
discriminative and generative learning, coupled with back-
ground modeling to filter irrelevant frames, achieving strong
performance with minimal labeled data. Progress has also
been driven by large-scale datasets such as UCF101 [70],
which provides diverse, realistic user-uploaded videos for
benchmarking action recognition algorithms.

D. 3D HAND MODELING

Bridging the embodiment gap between human hands and
robot grippers is a key challenge in learning manipulation
skills from videos. To address this, researchers have explored
both hardware solutions and computational models for 2D/3D
hand representation, enabling robots to more effectively
imitate human actions.

Early approaches introduced anthropomorphic robotic
hands for teleoperation and video-based learning. For
example, LEAP Hand [71] is a low-cost design that
supports visual teleoperation, passive learning, and sim-to-
real transfer by extracting hand poses from web videos.
Similarly, DexMV [11] provides a simulation and vision-
based pipeline that maps 3D human hand poses to robot-
compatible demonstrations, while DexVIP [72] leverages
YouTube videos and human hand priors to learn dexterous
grasping without expensive lab data, enabling generalization
to novel objects.

Advances in motion capture have further improved fidelity.
FrankMocap [73] offers fast monocular 3D hand and body
pose estimation using SMPL-X [74], while MANO [75]
provides a parametric hand model built on SMPL [76], deliv-
ering low-dimensional, realistic representations widely used
in robotics and graphics. Complementary work [60] focuses
on grasp realism, enforcing consistency between hand-object
contact points through self-supervised objectives, improving
flexibility and accuracy even during testing.

Collectively, these methods reduce embodiment differ-
ences and establish robust hand modeling pipelines, laying
the foundation for high-fidelity manipulation learning from
human demonstrations.

E. DATASETS

In our discussion of the essential components for training
robot manipulation policies, the importance of datasets
cannot be overstated. Datasets form the foundation upon
which learning algorithms build their understanding of
manipulation tasks. Learning robot manipulation skills from
demonstration videos requires carefully curated datasets that
capture humans performing these tasks in various environ-
ments such as kitchens, living rooms, workshops, and more.
These datasets not only provide the raw data necessary for
training but also offer insights into human-object interactions,
task variability, and environmental context.
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This section categorizes and details some of the most
influential datasets used in the field of robot manipulation
learning, highlighting their unique characteristics and contri-
butions.

1) LARGE-SCALE VIDEO DATASETS

These datasets offer a vast amount of video data captur-
ing diverse activities and interactions. Additionally, these
datasets are typically sourced from the internet and present
a wide range of scenarios and tasks, making them invaluable
for generalizing robot learning.

o YouTube: As one of the largest video platforms,
YouTube serves as arich source of diverse video content.
Several works have curated specific subsets of YouTube
videos relevant to robots manipulation, providing a
broad spectrum of tasks and environments.

For instance, in [77], the authors introduced HD-VILA-
100M, a large dataset with two distinct properties: 1)
it is the first high-resolution dataset, including 371.5k
hours of 720p videos, and 2) it is the most diversified
dataset, covering 15 popular YouTube categories. YT-
Temporal-180M, introduced in [78], is a diverse corpus
of frames/ASR derived from a filtered set of 6M diverse
YouTube videos.

In addition to these works, researchers have introduced
datasets with smoother and more descriptive video-
text pairs. One of such works is WTS-70M, a 70M
video clips dataset presented in [79], contains textual
descriptions of the most important content in the video,
such as the objects in the scene and the actions being per-
formed. The authors in [80] introduced HowTol00M:
a large-scale dataset of 136 million video clips sourced
from 1.22M narrated instructional web videos depicting
humans performing and describing over 23k different
visual tasks. Additionally, [81] provided a new video-
text pretraining dataset WebVid-10M, comprised of over
two million videos with weak captions scraped from the
internet.

o Internvid: Compiled from various internet sources,
Internvid [82] focuses on activities and tasks that
are particularly informative for robotic learning. This
dataset encompasses a wide array of human activities,
enhancing the versatility of trained models.

o Something-Something: This dataset [83] consists of
videos where humans perform a wide range of actions
on everyday objects. It is particularly useful for training
models to recognize and replicate specific human-object
interactions.

2) EGOCENTRIC (FIRST-PERSON) VIDEO DATASETS
Egocentric datasets capture videos from the first-person
perspective, offering a unique vantage point for under-
standing hand-object interactions and human intent. These
datasets are especially valuable for tasks that involve detailed
manipulation and personal perspective.
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o Ego-4D: A comprehensive dataset of first-person videos
capturing daily activities, Ego-4D [84] provides rich
data on hand-object interactions from the wearer’s
perspective. This dataset is instrumental in training
models to understand and predict human actions in a
personal context.

o Ego-Exo0-4D: Building on the Ego-4D dataset, Ego-
Exo0-4D [85] includes both egocentric and exocentric
(third-person) views of the same activities. This multi-
perspective approach offers a more holistic understand-
ing of tasks, aiding in the development of models
that can interpret and execute actions from different
viewpoints.

3) TASK-SPECIFIC AND MULTI-MODAL DATASETS

Task-specific and multi-modal datasets are designed to study
particular tasks or provide multiple modalities of data, such as
video, audio, and annotations. These datasets are tailored to
enhance the learning process for specific manipulation skills.

o Epic Kitchens: Focused on kitchen activities, this
dataset [86] captures detailed interactions with objects
and the environment from an egocentric perspective. The
rich annotations and diversity of tasks make it ideal for
training models on kitchen-related manipulation tasks.

o RoboVQA: This dataset [87] is designed for Visual
Question Answering in robotic contexts. It includes
videos of robots performing tasks and corresponding
questions that test the robot’s understanding and rea-
soning based on the visual data. RoboVQA helps in
developing models that can interpret and respond to
queries about manipulation tasks.

4) EMBODIED Al AND INTERACTIVE DATASETS

Embodied Al and interactive datasets emphasize tasks that
involve interaction with the environment, providing rich con-
textual information that is crucial for learning manipulation
skills.

o Open X-Embodiment: A comprehensive dataset [16]
that includes videos of various embodied Al tasks,
capturing interactions in different environments. This
dataset is the largest and most diverse open source
robotics dataset to date, unifying 34 distinct datasets
from 22 different robot embodiments. It is designed for
large-scale, cross-platform model pretraining containing
over 1.6 million trajectories spanning more than 60,000
unique tasks. It supports vision, language (instructions),
and action (State/Pose) modalities.

« DROID (Distributed Robot Interaction Dataset):
DROID [88] comprises over 76,000 trajectories (~350
hours) collected across 564 scenes and 86 tasks by more
than 50 users. Designed for diversity and generalization,
it outperforms Open X-Embodiment on both in- and out-
of-distribution tasks, making it a strong benchmark for
imitation learning.
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« BRMData (Bimanual-Mobile Robot Manipulation
Dataset): BRMData [89] is a dataset that focuses on
dual-arm and mobile manipulation, capturing tasks such
as object handovers, opening cabinets, and cleaning.
It features ten household tasks performed by a mobile
manipulator equipped with two robot arms, and includes
RGB and depth data from multiple camera viewpoints.
The dataset also emphasizes environmental interaction
and whole-body planning, supporting the development
of controllers that operate in both tabletop and mobile
contexts.

o Fourier ActionNet: Fourier ActionNet [90] contains
30,000 teleoperated bimanual trajectories (~140 hours)
of tabletop manipulation. Each trajectory is anno-
tated with human-written task prompts, supporting
instruction-conditioned policy learning and dexterous
control.

« Kaiwu Dataset: Kaiwu [91] offers 11,664 demonstra-
tions of human assembly tasks using 30 objects and
20 participants. The dataset includes synchronized RGB
video, audio, EMG, eye gaze, motion capture, and tactile
data, making it suitable for multimodal representation
learning.

o TASTE-Rob: TASTE-Rob [92] provides over 100,000
egocentric video clips of human manipulation aligned
with natural language instructions. It emphasizes object-
centric motion and temporal segmentation, useful for
training video-conditioned imitation policies.

F. LARGE SCALE ROBOTIC RESOURCES

The success of large-scale models in computer vision and
natural language processing has set a high bar for what
is possible with extensive data and powerful architectures.
In robotics, a similar paradigm shift is underway with the
introduction of Vision-Language-Action (VLA) models. The
initial efforts in this space, represented by models like RT-1
[14] and RT-2 [15], provided the foundational blueprint for
large-scale robot learning.

RT-1 was a major milestone, introducing open-ended, task-
agnostic training and the Robotics Transformer architecture
to enable strong generalization to new tasks with minimal
data. The model uses a FiLM-conditioned [93] EfficientNet-
B3 encoder, with instruction embeddings from a Universal
Sentence Encoder, and compresses convolutional outputs
using a TokenLearner module to produce compact visual
tokens. These tokens, concatenated across the observation
dimension, are fed into an 8-layer decoder-only transformer
(~19M parameters) that autoregressively predicts discretized
action tokens, with each action dimension quantized into
256 bins. This design enabled real-time control and estab-
lished the feasibility of training open-ended, task-agnostic
robot policies with strong generalization. Building on this,
RT-2 advanced the field by integrating VLMs. Instead
of training a small transformer from scratch, RT-2 used
pretrained VLMs such as PaLI-X [94] and PaLM-E [95]
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TABLE 3. An overview of prominent video datasets relevant to robot learning. The table compares datasets on their primary content, unique features,

scale, annotation methods, and data modalities.

Dataset Content Focus Key Feature

Scale Modalities

General Web and Instructional Videos

HowTo100M [80] Instructional videos cover-  Massive

scale for  136M clips from 1.22M  Vision, Language

ing ~23k different human learning procedural, videos (1.36M hours) (ASR)
tasks step-by-step tasks
WebVid-10M [81]  Short, general-domain web  Tightly-aligned, 10.7M clips from 2.5M  Vision, Language
videos with alt-text captions ~ descriptive video-text  videos (52k hours) (Alt-text)
pairs from web data
Something- Basic human-object interac-  Focus on fine-grained 220,847 video clips Vision, Language (La-
Something-v2 tions (e.g., "pushing some-  action recognition bels)
[83] thing") from templated labels

Egocentric Videos

Ego-4D [84] Daily life activities captured ~ Unprecedented scale 3,670 hours of video  Vision, Audio, Lan-
from a first-person view and diversity for  (2.78M clips) guage, 3D Mesh, Eye
egocentric human Gaze, Stereo
activity
Ego-Exo0-4D [85] Activities recorded simulta-  Provides paired per- 1,400 hours of paired Vision, Audio, Lan-
neously from ego- and exo-  spectives for learning  video guage, Pose, 3D Ge-
centric views view-invariant skills ometry
EPIC- Unscripted activities in a  Dense, fine-grained 100 hours of video (90k  Vision, Audio, Lan-
KITCHENS-100 kitchen environment annotations of actions  action segments) guage (Action/Object
[86] and object interactions labels)

Robotics and Embodied Al

Open X-  Manipulation  trajectories  Unifies dozens of 1M+ trajectories across  Vision, Language
Embodiment from 22 different robot robotics datasets for 527 skills (Instructions), Action
[16] platforms large-scale co-training (State/Pose)
InternVid [82] Narrated videos of diverse  High-quality, cleaned 236M clips from 7M  Vision, Language
human-object interactions video-text pairs for  videos (760k hours) (Cleaned ASR)
strong generalization
RoboVQA [87] Robot manipulation  Designed for question- 98k video-question pairs ~ Vision, Language
sequences for visual  answering about robot (Q&A)
reasoning tasks actions and states
DROID [88] Diverse manipulation  Collected by 50+ 76k trajectories (350  Vision, Language, Ac-
demonstrations across many  users globally with  hours) tions
scenes and tasks high  generalization
capability
BRMData [89] Mobile and dual-arm house-  Captures both tabletop 10 tasks with multi-view  Vision (RGB, Depth),
hold manipulation and mobile dual-arm  videos Actions
tasks in real homes
Fourier ActionNet  Bimanual dexterous manip-  Teleoperated control 30k trajectories (140  Vision, Language
[90] ulation with natural language  hours) (Prompts), Actions
task descriptions
Kaiwu [91] Human demonstrations of  Rich multimodal data 11,664 demos across 30  Vision, Audio, EMG,
assembly tasks including audio, gaze,  objects Eye Gaze, Tactile,
EMG, and tactile sen- Motion Capture
sors
TASTE-Rob [92] Egocentric hand-object ma-  Large-scale video-  100k+ video-instruction  Vision, Language (In-
nipulation instruction pairs for  clips structions)

manipulation learning

as perception backbones, casting robot actions as discrete
language tokens. Actions (e.g., 7-DOF poses and gripper
states) were serialized into integer strings, enabling the model
to predict them like words in a sentence. These models, along
with collaborative efforts like Open X-Embodiment [16],
established the viability of training adaptable policies on
diverse datasets collected from multiple robot platforms.
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However, their reliance on discretization for action modeling
imposed limitations in precision and multimodality. This laid
the groundwork for the next wave of research, which seeks to
overcome these constraints through architectural innovations
in action representation and reasoning.

The limitations of first-generation large models have
sparked a wave of models [96], [97], [98], [99], [100], [101],
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[102], [103] that prioritize more expressive action modeling
and stronger reasoning capabilities. A central theme is
the shift from simple action discretization to architectures
that can capture continuity, multimodality, and temporal
correlation in control.

One line of work extends the original discretization
approach but enriches it with stronger perception and scaling.
OpenVLA [96], for example, employs dual vision encoders
(SigLIP [104] and DINOV2 [105]) projected into a Llama-2
[106] backbone, enabling action prediction as 256-bin tokens.
Despite using just 7B parameters, OpenVLA outperforms
larger closed-source counterparts such as RT-2-X [16] (55B),
largely due to training on nearly one million robot trajectories
from the Open X-Embodiment corpus. Spatial VLA [102]
builds on this idea by embedding actions into ‘‘Adaptive
Action Grids,” where motions are discretized into spatially
grounded tokens tied to 3D coordinates. This spatially
informed design, combined with Ego3D position encodings,
improves sim-to-real transfer and allows fine-grained control
across environments.

Beyond discretization, a second strand of research
embraces diffusion and flow-matching techniques to model
the continuous distribution of robot actions. CogACT [98]
exemplifies this separation of concerns: it uses a pretrained
VLM for perception but delegates trajectory generation
to a diffusion-based ‘“‘cognition-to-action” block, capturing
multimodal and temporally correlated dynamics. RDT-
1B [99] extends this to bimanual manipulation, using a
diffusion transformer to predict long action horizons (64
steps) and showing nearly double the performance of models
trained without large-scale pretraining. o [103] takes the
flow-matching route (as shown in Figure 1), parameterizing
an ODE-based transformation on noisy action samples
to generate smooth high-frequency control signals (up
to 50 Hz). Collectively, these methods address the precision
bottlenecks of autoregressive tokenization, enabling dexterity
and responsiveness.

A complementary direction introduces cognitive and data-
centric innovations. GROOT N1 [101] adopts a dual-system
design (shown in Figure 2: a pretrained VLM (System
2, ~1.34B parameters) interprets vision-language input at
low frequency (~10 Hz), while a diffusion-based action
transformer (System 1, ~0.9B parameters) outputs motor
commands at high frequency (~120 Hz) using flow matching.
Its “data pyramid” strategy, integrating internet video,
synthetic physics simulations, and real-world robot data,
provides robustness to the scarcity and heterogeneity of
robot demonstrations. Similar cognition-inspired modularity
underlies models like CogACT, which demonstrate substan-
tial improvements over both OpenVLA and RT-2 on standard
benchmarks.

In contrast to these works, the GR-2 [100] model adopts a
video-first approach. It is pre-trained on a massive volume of
internet videos, specifically, 38 million video clips, to predict
future frames autoregressively. This process is designed to
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enable the model to acquire a deep understanding of the
world’s dynamics, which is then transferred to downstream
policy learning during a subsequent fine-tuning stage for
action prediction. This methodology treats video prediction
as a form of world modeling, providing a strong prior
for understanding temporal and physical interactions before
learning to control a robot.

Taken together, these advances illustrate a field maturing
beyond the early era of discretized action tokens. The
emerging consensus is that scalable perception (via VLM
backbones and massive datasets) must be coupled with
expressive, continuous action modeling (via spatial struc-
tures, diffusion, or flow-based architectures). This evolution
is transforming VLAs from proof-of-concept systems into
dexterous, generalist robot policies with the ability to reason,
adapt, and act in complex real-world environments.

The rapid progression of VLA models showcases a sig-
nificant shift from simple fine-tuning to sophisticated multi-
component architectures that deeply integrate visual and
linguistic knowledge. These large-scale learning resources
are enabling robots to achieve unprecedented dexterity and
robust generalization by mastering complex physical and
semantic reasoning. Table 4 shows the comparative analysis
of the discussed VLA models.

IIl. APPROACHES TO LEARNING FROM VIDEOS
Researchers have proposed several approaches that adapt
videos as the data source for training robots for manip-
ulation tasks. Some of these approaches have borrowed
many ideas from computer vision, while a few have also
incorporated ideas from language modeling. Substantial
advancements have been documented within this domain;
nevertheless, a more profound comprehension of the issue
and additional exploration into novel learning methodologies,
as well as fine-tuning existing ones, are needed to enhance
the manipulation skills acquired by robots. The resulting
discussions critically assess important literature in this field,
highlighting prevailing challenges that impede the capacity
of robots to acquire manipulation skills through passive video
observation.

The field of video-based robot manipulation encompasses
a variety of approaches, each leveraging different techniques
to enable robots to learn and perform tasks by observing video
demonstrations. This section categorizes these approaches
into distinct but interrelated groups, providing a coherent
framework for understanding the landscape of methods in
this domain. The timeline of the most impactful works
and breakthroughs presented in this review is illustrated in
Figure 3.

A. FOUNDATIONAL PERCEPTION AND REPRESENTATION
METHODS

Effective robot learning from videos relies on establishing
perceptual and representational foundations that capture
relevant task information and facilitate transfer across
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FIGURE 1. Left: Advanced Action Modeling - This group

of models uses generative models for action representation,

Right: Spatial and Embodied Reasoning - This group of works goes beyond basic visual inputs by incorporating a
deeper understanding of 3D space and physical relationships (relevant works: SpatialVLA and Gemini Robotics).
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FIGURE 2. This categorizes the models into three groups based on their core design philosophy, showing a
high-level view of how each model approaches the problem of VLA modeling. Left: directly adapting a

pre-trained VLM for robotic control (relevant works:

OpenVLA, Octo, Gemini Robotics, SpatialVLA), Middle:

Separates the high-level reasoning from low-level action generation (relevant works: CogACT, GROOT N1,
CoT-VLA), Right: Focuses on pre-training on massive datasets of non-robotic videos to learn the underlying
dynamics of the world, a form of “embodied physics,” before specializing for robot control. (relevant works:

GR-2).

domains. On one hand, feature extraction methods focus
on deriving meaningful visual or structural representations
from raw video, using techniques such as CNN-based
encoding or pose and keypoint detection. On the other hand,
domain bridging approaches address the gap between human
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demonstration videos and robotic execution by translating
visual and contextual information into robot-compatible
representations. Together, these methods provide the essen-
tial perceptual groundwork for higher-level learning from
videos.
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TABLE 4. Comparative overview of state-of-the-art VLA models.

Model Core VLM/Pre-training Action Represent. Method Key Architectural Innovation
OpenVLA [96] Llama 2 + DINOv2 &  Discrete Tokenization Open-source VLA, efficient fine-tuning
SigLIP (LoRA)
Octo [97] From scratch (Transformer-  Diffusion-based Modeling Flexible, compositional architecture,
first) open-source
CogACT [98] Prismatic VLM (Llama 2 +  Diffusion Action Transformer Decoupling of "cognition" (VLM) and
DINOV2 & SigLIP) "action" (DiT)
RDT-1B [99] From scratch (Diffusion  Diffusion-based Modeling Specialized for bimanual control, Uni-
Transformer) fied Action Space
o [103] PaliGemma 2 Flow Matching High-frequency control (50 Hz), multi-
expert architecture
GROOTNI[101]  Gemini 2.0 (distilled) Diffusion Transformer Dual-system architecture (System 2 +
System 1), data pyramid
Spatial VLA PaliGemma 2 Adaptive Action Grids Ego3D Position Encoding, spatial-
[102] aware action tokenization
GR-2 [100] From scratch on internet Conditional VAE Video-generative pre-training, whole-
video body control (WBC)

CoT-VLA [107] VILA-U (generative multi-  Hybrid: Causal + Full Attention ~ Visual chain-of-thought (CoT) reason-

modal)

ing with subgoal images

Gemini Robotics  Gemini 2.0 (VLM) VLA on Gemini Robotics-ER Dedicated embodied reasoning model

[108]

(ER) for perception

1) FEATURE EXTRACTION METHODS

A key step in learning from video is extracting task-
relevant features that can guide robot policies. CNN-based
approaches learn spatio-temporal representations directly
from raw pixels for tasks such as object detection and hand-
object interaction. In contrast, pose estimation and keypoint
detection methods provide higher-level structural cues by
explicitly modeling object geometry and motion dynamics.
These two complementary strategies form the basis of video
feature extraction for robot learning, as discussed below and
shown in Figure 4.

o CNN-based Feature Extraction: Early efforts in video-
based robot learning primarily relied on Convolutional
Neural Networks (CNNs) to extract visual features
from demonstration videos, laying the foundation for
mapping raw perception to robot action. A representa-
tive example is the work of [109], which combined a
CNN-based Single Shot MultiBox Detector (SSD) for
hand-object interaction detection with a fully convolu-
tional network (FCN) to predict future hand positions.
By coupling perception and control, the system directly
translated visual cues into motor commands, enabling
adaptive robot behavior.

Subsequent approaches expanded this pipeline with
richer perception modules to better capture the
complexity of human demonstrations. For instance,
[110] augmented CNN-based object detection with
OpenPose-based hand localization and greedy video
segmentation, allowing the robot to infer collaborative
actions and object transfers from relative spatial
configurations. Similarly, [111] integrated two-stream
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CNNs with Mask R-CNN to construct a video parser,
which, in combination with a grammar-based execution
module, translated visual observations into structured
manipulation commands. These approaches illustrate a
shift from simple object detection toward frameworks
that combine visual parsing with higher-level action
reasoning.

More recent works have pushed CNN-based pipelines
toward generalization and scalability. The SWIM frame-
work [112], for example, pretrains on large-scale
human interaction videos to learn structured world
models of hand-object manipulation. With minimal
finetuning on robot data, these representations support
goal-conditioned planning, demonstrating the utility of
pretraining as a bridge from human demonstrations to
robot execution. Previous efforts, such as [113], empha-
sized compositional representations by pairing CNN-
based object detection with grammar-based parsers,
highlighting the move toward language-like abstractions
of manipulation.

Addressing domain shift, [114] introduced latent vari-
able models trained on both labeled and unlabeled
videos to disentangle shared and domain-specific factors
of action. More recently, [115] took this further by
eliminating the need for action labels, synthesizing
robot-action videos from demonstrations and learning
policies directly from raw RGB inputs. These advances
mark a trajectory from frame-level feature extraction to
structured, generalizable, and annotation-free models of
robot manipulation, steadily expanding the robustness
and applicability of video-based learning.
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each work introduced to the field.
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TR
Policy Learning
Framework

Video Input

FIGURE 4. Feature extraction methods in video-based robot learning.
CNN-based pipelines extract object features and masks, while
pose/keypoint methods capture skeletal motion cues, both providing
intermediate representations for policy learning.

o Pose and Keypoint Detection: While CNN-based
pipelines emphasized holistic visual features, a parallel
line of work has focused on pose and keypoint
detection to capture the fine-grained structure of human
motion. Instead of treating video frames as undifferen-
tiated inputs, these methods identify joints, fingertips,
or object centers and assemble them into coherent spatial
arrangements, providing robots with precise cues about
the intent and feasibility of demonstrated actions.
Several studies leveraged pose estimation to bridge the
gap between human demonstrations and robot control
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directly. For example, [116] extracted detailed hand
poses using the 100DOH model and mapped them into
robot coordinates with depth sensing, creating strong
priors for policy learning. Similarly, [117] proposed
a two-stage pipeline that first reconstructs 3D human
poses and then retargets them to robot kinematics,
ensuring that trajectories remain both functional and
feasible. These approaches emphasize embodiment
alignment, translating human movements into robot-
compatible actions.

Pose-based reasoning has also proven valuable for
dynamic skill transfer. The work of [118] reconstructed
actor trajectories from monocular videos and trained
reinforcement learning controllers to imitate these
motions in simulation, demonstrating how weakly
supervised pose estimation can bootstrap skill acquisi-
tion. Domain-specific applications, such as [119], have
fused Keypoint-RCNN with imitation learning to teach
assembly tasks, where reconstructed hand trajectories
guided a UR3 robot through precise manipulation.
Scaling beyond curated datasets, methods like DexVIP
[72] exploit large-scale “‘in-the-wild” human-object
interaction videos to learn diverse grasping strategies.
By combining human hand pose priors with reinforce-
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ment learning, Dex VIP achieved generalizable grasping
without costly lab-collected data. Meanwhile, lighter-
weight approaches combine keypoints with domain
adaptation: [120] used EfficientNet-based keypoint
detection with CycleGAN translation to align human
and robot domains, enabling learning from raw demon-
strations. The Learning by Watching (LbW) frame-
work [121] further unified keypoint extraction, image
translation, and reinforcement learning into a pipeline
that enables unsupervised imitation from human videos
without expert annotation.

Together, these works illustrate an evolution from
basic pose/keypoint detection toward pipelines that
integrate retargeting, domain adaptation, and large-scale
pretraining. By capturing structured motion cues, pose-
based methods complement CNN-based perception,
offering robots interpretable, transferable representa-
tions of human actions for imitation and skill learning.

Table 5 shows that feature extraction methods are data-
efficient and flexible, well-suited for leveraging large
unlabeled video datasets and producing interpretable repre-
sentations. They work especially well with reinforcement
or imitation learning but face challenges with embodiment
transfer, scaling to long-horizon reasoning, and domain gaps.
Thus, they are valuable for action parsing, object-centric
manipulation, and collaboration, though less effective for
abstract policy reasoning or seamless transfer.

2) DOMAIN BRIDGING VIA TRANSLATION

When robots learn manipulation skills from human demon-
stration videos, a significant challenge arises due to the
domain shift, primarily stemming from differences in embod-
iment, visual appearance, and context between humans and
robots. Bridging this gap requires intermediate representa-
tions and translation techniques that enable robust transfer of
skills across domains. Image and context translation methods
have emerged as effective solutions, focusing on transforming
visual and contextual information to enhance skill transfer,
generalization, and adaptability for robotic manipulation.

o Image Translation: A major challenge in video-based
robot learning is the domain gap between human
demonstrations and robot execution. Image translation
methods address this by transforming visual data
across domains, for instance, converting human-centric
demonstrations into robot-perspective images or adapt-
ing synthetic renderings into realistic ones. By aligning
visual appearances, these methods create a bridge that
allows robots to directly interpret and imitate human
actions. Classic GAN-based approaches [122], [123],
[124] laid the foundation, enhancing the realism of
training data and improving robots’ ability to generalize
manipulation skills [125].

Within robotics, translation has proven especially
powerful for mapping fine-grained object and hand
interactions into robot embodiments. For example,
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[126] introduced a two-module pipeline where a
conditional GAN (and domain-invariant networks [5],
[35], [36], [114], [127]) predicted visual sub-goals
from demonstration videos, while a low-level controller
generated corresponding actions. This decoupling of
perception and control allowed skill transfer even
with unaligned datasets. Similarly, Automated Visual
Instruction-following with Demonstrations (AVID)
[128] employed CycleGAN [129] to translate human
videos directly into robot images at the pixel level, pro-
ducing instruction images that served as reward signals
for reinforcement learning. These works highlighted
how direct appearance-level alignment could eliminate
the need for manual correspondence between human and
robot demonstrations.

Recent advances have built on these foundations
with more expressive architectures. Transformer-based
systems, such as the one-shot imitation framework
in [130], leveraged self-attention modules to perform
unsupervised image-to-image translation, combining
goal-conditioned behavioral cloning with deep RL to
robustly track and imitate behaviors. Beyond pixel-level
mappings, meta-imitation learning methods like A-
CycleGAN [131] introduced bi-directional translation
between human and robot domains. Coupled with self-
adaptive meta-learning, these systems generate imag-
ined robot data to support rapid adaptation with minimal
demonstrations, marking a shift toward scalable and
flexible cross-domain imitation.

Context Translation: Whereas image translation
focuses on aligning visual appearance, context trans-
lation tackles the broader challenge of transferring
skills across tasks, environments, and viewpoints. This
enables robots to adapt behaviors learned in one setting
to novel situations with different backgrounds, object
positions, or camera perspectives [132].

One of the earliest examples is [133], which trained
a context translation model on paired demonstrations
from diverse scenarios. By learning to predict how the
same skill looks across contexts, the system enabled
a robot to reproduce behaviors in new environments
using reinforcement learning. Building on this, [134]
developed a context-agnostic task representation paired
with a multi-modal inverse dynamics model. By fusing
RGB and depth data (and compensating when depth was
missing), their system achieved robust action prediction
across diverse viewpoints and object configurations.
Integration with unsupervised video translation fur-
ther enhanced scalability. The Learning by Watching
(LbW) framework [121] combined MUNIT-based [135]
video translation with unsupervised keypoint detection,
mapping human demonstrations into robot domains
without explicit task supervision. Structured keypoint
representations extracted from translated videos served
as inputs for reinforcement learning, enabling robots to
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TABLE 5. Comparison of feature extraction-based approaches for learning manipulation skills from human video.

Method Task Performance Sample Efficiency Compute Cost Embodi. Handling Pros (+) / Cons (-)

[109] Good; real-time col- Moderate; unlabeled Moderate (CNN-  Direct transfer by vi-  (+) Unlabeled human
laborative tasks videos, needs hand based networks) sual regression videos; (-) Needs ini-

annotations. tial annotations

[118] Robust, generalizable = Moderate-high; lever-  High (deep RL, pose ~ Pose estima-  (+) Rich video data,
dynamic skills (e.g., ages abundant video estimation, and simu-  tion/motion dynamic  skills; (-
acrobatics) data lation) reconstruction. ) High  compute

and reconstruction
complexity

[114] Effective tool-use  Moderate; leverages  Moderate-high Learns domain- (+) Passive human
learned purely from  both observation and  (latent models and  specific priors obs., generalizable; (-)
observation interaction data inference) Needs careful latent

modeling

[121] Effective simulation = Moderate; relies  Moderate  (images  Unsupervised (+) Structured seman-
manipulation tasks on unsupervised  translation, keypoints  human-to-robot tics, unsupervised; (-)

translation and  detection, and RL) translation Simulation only
detection

[72] Effective  dexterous  High; leverages video  Moderate-high (RL,  Hand-pose priors  (+) Pose priors, good
grasping in simulation  priors pose extraction) from video generalization; (-)

Pose extraction limits

[117] Robust teleoperation ~ Low; uses large unla-  Moderate (pose esti- 3D pose-based retar-  (+) Real-time, low
& dexterous control  beled videos mation, neural retar-  geting data; (-) Needs
in real-time geting) reliable pose

estimation

[116] Good; generalizes in  High; learns from sin-  Moderate (sampling- Human priors +  (+) One-shot learning;
many  manipulation  gle human demonstra-  based optimization, video alignment (-) Sensitive to priors
tasks tion alignment loss)

[112] Robust for various  High; few real-world  Moderate-high Affordance learning (+) Few-shot, robust;
manipulation tasks trajectories needed (world model (-) High model train-

training and ing cost
finetuning)

[115] Effective performance  High; no action labels =~ Moderate (video syn-  Dense correspon-  (+) Inference without
across manipula-  needed thesis, flow predic- dences for action action labels; (-) Re-
tion/navigation tion, optimization) lies on flow accuracy

[113] High accuracy on ac-  Moderate; uses large = Moderate (CNN, Perception module (+) Handles
tion parsing from un-  video sets grammar parsing) based unconstrained  data;
constrained videos (-) Needs reliable

perception

[119] Effective in collabora-  Moderate; needs mul- ~ Moderate-high (pose  Pose estimation + (+) Accurate pose,
tive assembly tasks tiple demonstrations estimation nets, tra-  video retargeting task alignment; (-)

jectory optimization) Video/camera quality
sensitive

[111] Good in multi-object ~ High; uses attribute- Moderate (CNN, at-  Attribute-specific re- (+) High object-
manipulation guided demos tribute inference) targeting specific accuracy;

(-) Needs attribute
extraction

[120] Effective in simple High; 20-30 demos Moderate (keypoints CycleGAN-based (+) Efficient, robust; (-
manipulation tasks sufficient extraction, translation ) Limited task com-

CycleGAN, BC, plexity
SQIL)

[110] Good in collaborative ~ Moderate; uses public ~ Moderate  (YOLO,  Grammar/symbolic (+) Generalizable

parsing from uncon-  unlabeled videos OpenPose, grammar)  parsing parsing; (-) Action

strained video

recog. accuracy limits

imitate behaviors under varying contextual constraints.
Crucially, both training data for humans and robots
were collected via random demonstrations rather than
expert labels, lowering the barrier for large-scale data

collection.
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Image and context translation offer complementary strate-
gies to bridge the human-robot domain gap. Image trans-
lation aligns the robot’s visual perception with demon-
strations, while context translation adapts actions across
environments, viewpoints, and tasks. Progress has evolved

184083



IEEE Access

C. Eze, C. Crick: Learning by Watching: A Review of Video-Based Learning Approaches

TABLE 6. Comparison of image and context translation-based approaches for learning manipulation skills from human video.

Method Task Performance

Sample Efficiency

Compute Cost

Embodi. Handling

Pros (+) / Cons (-)

[

]

Good; high sim task

Moderate; needs mul-

Moderate; translation

Weak; assumes hu-

(+) Learns from raw

success; outperforms  tiple human video de- model + visual en- man and robot use video; (-) Requires
GAIL/TPIL mos from varied con-  coder+RL (TRPOor same tools and sim-  morphology/demo
texts and 100k+ sam-  GPS) ilar viewpoint to re-  alignment
ples during RL duce domain gap
[126] High; 60-75% real High; reusable low- Moderate; U-Net +  Moderate; uses  (+) Hierarchical;
robot success; level controller; fewer ~ ResNet-based goal =~ GAN-based sub-goal = modular/sample-
outperforms end- task-specific samples generator + inverse transfer efficient; (-) Goal
to-end and DAML  needed model; trained generator task-
baselines separately specific
[128] High; 80-100% multi-  Very high; learns full ~ High; CycleGAN  Strong; translates en-  (+) Automated
stage task success tasks with ~20 mins of ~ + structured latent tire human demo to  resets, scalable; (-)
human video and 180 model + MPC + robot via CycleGAN  CycleGAN requires
mins of robot practice  classifier-based without paired data good translation data,
reward per-task model
[130] High; 88.8% pick- High; 3x less data High; Transformer Strong; self-  (+) Excellent transfer,
place success needed with inverse  supervised sim- modular; (-) High
dynamics and  to-real data/compute
keypoint loss
[121] Strong; comparable  High; learns from sin-  Moderate; Strong;  keypoints  (+) Avoids artifacts,
or superior to  gle human demo per CycleGAN +  structure for transfer  efficient; (-) Needs ro-
AVID/Classifier- task keypoint extraction + bust translation model
based methods RL
[131] Strong; matches  High; only human High; A-CycleGAN  Strong; A-  (+) No robot demos;

DAML without robot
demos

video needed during
training

+ meta-learning

CycleGAN handles
shifts

(-) Relies on good la-
tent/action inference

Good; beats baselines
on stacking in differ-
ent contexts

Moderate; uses paired
data and depth predic-
tion

Moderate-high;  4-  Moderate; via con- (+) Strong cross-
model pipeline with  text translation and context performance
depth estimation multimodal input with  RGB-D; (-
) Needs depth
prediction model

and alignment

from early GAN-based pixel translation to transformer
and meta-learning frameworks, moving toward scalable,
annotation-efficient, and robust pipelines for unstructured
settings.

Table 6 illustrates how these methods address visual and
semantic gaps, enabling sim-to-real and cross-domain trans-
fer from raw or unpaired video data. However, challenges
remain in precise action alignment, artifact reduction, and
managing embodiment mismatches. Despite these hurdles,
context translation remains critical for advancing generaliza-
tion and real-world adaptability.

B. REINFORCEMENT LEARNING (RL) APPROACHES
Reinforcement Learning (RL) provides a powerful paradigm
for enabling robots to acquire manipulation skills through
interaction, optimizing behavior by trial and error guided
by reward signals. In the context of learning from
video, recent research has explored how RL can be
combined with rich perceptual inputs extracted from
demonstrations. This integration allows robots to benefit
both from their exploratory learning and from structured
guidance provided by human expertise in video data.
A depiction of the RL-based subcategories is shown in
Figure 5.
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1) VISUAL RL WITH FEATURE EXTRACTION

Early approaches sought to ground RL in visual represen-
tations derived from video, leveraging feature extraction to
transform demonstrations into useful training signals. For
example, the video parsing framework of [136] combined
Mask R-CNN with a dedicated hand-object detector to build
coarse 3D scene representations from human demonstrations.
These representations were aligned across trajectories and
used to generate dense reward signals, guiding RL policies
toward precise motor execution. Similarly, [137] emphasized
extracting tool motion from instructional videos, aligning
simulated environments with human demonstrations, and
employing trajectory optimization to bridge from visual
guidance to executable robot policies. In both cases, parsing
video into trajectories provided structured signals that made
RL training more efficient.

A persistent challenge, however, is that raw video demon-
strations typically lack explicit action or reward labels, and
domain shift can make learned policies brittle. To address
this, [138] introduced a hybrid approach that combined
offline observational data with online interaction. Their
system maintained dual replay buffers, one for action-free
video observations and another for action-conditioned robot
experience, and learned inverse models over compressed,
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FIGURE 5. Reinforcement learning paradigms in video-based robot learning - Left: visual RL with feature extraction,
grounding policies in parsed video features; Right: structured and hierarchical RL, learning high-level video
embeddings for multiple tasks, and decomposing long-horizon tasks into subtasks and primitive skills.

domain-invariant features. This design allowed robots to
infer missing actions and transfer knowledge across domains,
advancing RL toward robustness in heterogeneous video
settings.

2) STRUCTURED AND HIERARCHICAL RL
As research progressed, focus shifted from single-task
policies toward generalizable and scalable frameworks.
Neural Task Programming (NTP) [139] exemplified this
trend by decomposing tasks into hierarchical composi-
tions of primitive actions, parameterized by trajectories
or video demonstrations. Through meta-learning strategies,
NTP enabled robots to adapt policies quickly across diverse
manipulation tasks. Likewise, Adversarial Skill Networks
(ASN) [140] learned a task-agnostic skill embedding space
from unlabeled, multi-view observations. By leveraging
adversarial and metric learning objectives, ASN eliminated
the need for explicit action supervision, highlighting how
representation learning can facilitate transferable skills.

More recently, Video-conditioned Policy Learning (ViP)
[141] has advanced the integration of RL with large-
scale video data. ViP conditions policies directly on video
embeddings of demonstrations, using a supervised con-
trastive encoder trained on human activity datasets like
Something-Something-v2 [83]. At inference, ViP retrieves
task embeddings via nearest-neighbor search and conditions
policy learning on them, enabling multi-task and zero-shot
generalization. By directly grounding RL in high-level video
representations, ViP points toward scalable solutions where
robots can learn broad repertoires of behaviors from human
video libraries without paired training data.

Table 7 highlights the strength of reinforcement learning
in tackling complex, long-horizon tasks and achieving robust
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sim-to-real transfer, particularly in hierarchical and multi-
task manipulation. However, these gains come with high
computational and data costs, along with sensitivity to reward
design and training stability, limiting RL’s practicality despite
its adaptability.

C. IMITATION LEARNING (IL) APPROACHES

Imitation Learning (IL) is one of the most prominent
strategies for training robot manipulation policies. In contrast
to reinforcement learning, which depends on trial-and-error
exploration, IL enables robots to acquire skills directly
from human demonstrations. This reduces the need for
carefully engineered reward functions and often yields more
sample-efficient, generalizable policies, particularly valuable
in data-limited or real-world settings. Figure 6 shows the
different taxonomy of IL based approaches, and they are
discussed in details below.

1) BEHAVIORAL CLONING (BC) AND VARIANTS
A large body of IL research builds on behavioral cloning
(BC), where visual inputs from demonstration videos are
mapped directly to robot actions. Modern approaches typ-
ically employ CNN-based encoders for feature extraction,
combined with deep policy networks for action prediction.

Recent extensions of BC have introduced more flexible
task representations. For example, BC-Z [10] supports both
video- and language-specified tasks, enabling zero-shot
generalization. Its architecture combines a ResNet18 [142]
backbone with FiLM layers [93] for task conditioning, and
incorporates human-in-the-loop corrections via teleopera-
tion.

Other works have focused on data efficiency. TecNets [2],
[143] encode demonstrations into compact embeddings that

184085



IEEE Access

C. Eze, C. Crick: Learning by Watching: A Review of Video-Based Learning Approaches

TABLE 7. Comparison of reinforcement learning-based approaches for learning manipulation skills from human video.

Method Task Performance

Sample Efficiency

Compute Cost

Embodi. Handling

Pros (+) / Cons (-)

[

1

High; excels in hierar-
chical tasks (stacking,
sorting)

High; few demos

needed

Moderate (due to hi-
erarchical decompo-
sition and recursive
calls)

Good; task decom-
position, program in-
duction

+) Hierarchical
generalization,

modular, few-shot; (-)
Sensitive to low-level

API/collision
[140] High; learns complex ~ Moderate; uses unla-  Moderate (metricand ~ Good; adversarial ~ (+) Transferable
tasks from video beled video data adversarial learning) skill-transfer embeddings,
embeddings unsupervised skill
disc.; (-) Needs
careful metric
learning
[138] High; strong on  High; leverages hu- Moderate (inverse  Excellent; domain- (+) Good domain
vision-based tasks man videos, less robot  model training,  invariant embedding generalization,  sim-
data adversarial domain to-real; (-) Dependent
confusion) on inverse model
accuracy
[136] Good; effective for  Moderate; few demo  Moderate Excellent; 3D state  (+) Robust 3D gener-
object manipulation  videos needed (differentiable estimation transfer alization; (-) Approxi-
tasks rendering, RL mation errors for com-
training) plex scenes
[137] High; effective for High; requires  Moderate (trajectory  Excellent; (+) Tool-focused
tool manipulation  only single video optimization + PPO,  morphology- transfer, works across
(spade, hammer, demonstration alignment sampling agnostic via tool- robot morphologies,
scythe), 100% success up to 20k iterations) centric approach real robot validation;
rate (-) Requires sparse
reward environment,
limited to stick-like
tools, needs good
video visibility
[141] Excellent; zero-shot  Highly efficient; Moderate (pretrained  Excellent; pretrained  (+) Zero-shot general-
manipulation  from  leverages large human  video embedding, ef-  action embeddings ization, efficient infer-
human videos datasets ficient inference) ence; (-) Relies on pre-

trained embeddings

condition policies for rapid adaptation, while Multiple Inter-
actions Made Easy (MIME) [144] scales imitation through a
large demonstration dataset, pairing VGG-based [145] visual
encoders with LSTM-based [146] trajectory prediction.

Beyond direct cloning, IL can also be framed as an inverse
reinforcement learning (IRL) problem, where the goal is to
infer a cost function from demonstrations. A key direction
here is Imitation from Observation (IfO), which avoids
reliance on expert action labels. Generative Adversarial
Imitation from Observation (GAIfO) [147] exemplifies this
approach by recovering expert-like policies from observed
state transitions alone, providing a more scalable alternative
to traditional IRL.

2) META-IMITATION AND FEW-SHOT IL
To improve generalization, recent research integrates IL with
meta-learning and few-shot learning. The central idea is to
train on diverse tasks so that robots can quickly adapt to novel
ones from only a handful of demonstrations [127], [148].
Zero-shot imitation has been explored by [149], who com-
bined exploration-driven policies with forward-consistency
losses to enable imitation without labeled demonstrations.
Similarly, MOSAIC [150] employs multi-task architectures
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with self-attention and temporal contrastive modules,
enabling robust representation learning and improved task
disambiguation. Meta-learning methods such as Model-
Agnostic Meta-Learning (MAML) have also been adapted
for IL. Reference [5] trained policies across varied prior
tasks so that only a single new demonstration is required
for adaptation at inference. This one-shot generalization
illustrates the promise of meta-imitation in tackling domain
shift and data scarcity.

3) CROSS-DOMAIN AND HUMAN-TO-ROBOT TRANSFER

A parallel line of work addresses cross-domain transfer,
particularly from human video demonstrations to robot
execution. The work done in [151] demonstrated multi-
step task learning by localizing human-demonstrated actions
within supplemental videos, combining BC, IRL, and RL
for accelerated refinement. The authors in [152] proposed
a more direct strategy, applying BC on raw human videos
without explicit domain adaptation. By leveraging end-to-
end training with Adam optimization [153] and occlusion-
based perspectives (e.g., eye-in-hand views), their method
mitigates domain shift and enables direct policy transfer.
Other approaches incorporate auxiliary supervision signals.
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FIGURE 6. Taxonomy of imitation learning approaches - Left: behavioral cloning from raw videos, (Middle):
meta-imitation from few-shot demonstrations, and Right: cross-domain transfer from human-to-robot videos.

The Watch, try, learn (WTL) framework [154] integrates
visual meta-learning with binary success/failure feedback,
enabling policy refinement in sparse-reward settings. Graph-
based representations such as Visual Entity Graphs (VEGs)
[155] further enhance transfer by explicitly modeling spatial
and temporal relations between objects and actions, enabling
single-demonstration learning in real robotic systems.

Imitation learning approaches, as summarized in Table 8,
stand out for their sample efficiency and direct use of expert
demonstrations, making them ideal for scenarios where
rapid skill acquisition is critical. The comparative analysis
shows that advances in meta and one-shot learning have
further enhanced their ability to generalize from limited
data. However, the table also highlights persistent issues
with embodiment alignment and generalization, especially
across domains or when transferring from human to robot.
Many methods remain primarily evaluated in simulation.
In practice, imitation learning excels for tasks with readily
available demonstration data but may require augmentation
or hybridization for broader applicability.

D. HYBRID APPROACHES

Hybrid models have emerged as a powerful paradigm in robot
learning, combining RL, IL, and complementary techniques
to overcome the limitations of relying on a single method.
Early work demonstrated the effectiveness of augmenting IL
with RL-based fine-tuning, such as attention-driven imitation
guiding RL policies [156] and pose-driven motion imitation
refined via RL [118]. RL-based residual corrections to
demonstration trajectories [157] has also stood out as an
approach to adapt video demonstrations to robot trajectories.
Other efforts leverage cross-domain priors [158], unaligned
video demonstrations [159], or adversarial third-person
imitation [160] to improve generalization and robustness.
More recent approaches combine IL, RL, and control-
theoretic methods such as model predictive control (MPC)
for more efficient skill transfer [161]. By integrating multiple
learning strategies, these approaches enhance data efficiency,
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adaptability, and robustness, particularly in complex manip-
ulation tasks.

1) HYBRID RL AND IL

A central motivation for hybrid RL-IL approaches is to com-
bine the sample efficiency of imitation with the exploration
and optimization strengths of RL. Attentive Task-Net [156]
exemplifies this direction by integrating a self-supervised
attention network for viewpoint-invariant imitation with an
RL policy optimized using Deep Deterministic Policy Gradi-
ent (DDPG) [162]. A CNN-based embedding network learns
task-relevant visual features, which are refined by spatial
attention and used to guide RL agents, producing policies that
balance efficient imitation with long-horizon optimization.
Similarly, Skills From Videos (SFV) [118] extracts human
poses from monocular video, reconstructs reference motion
trajectories, and then trains deep RL policies to follow these
trajectories in simulation, demonstrating how perception-
driven imitation can be combined with RL to achieve robust
skill transfer across embodiments and environments.

2) DOMAIN ADAPTATION HYBRIDS
Hybridization has also proven critical for addressing domain
adaptation. Semantic Transfer Accelerated RL (STAR) [158]
leverages demonstrations from different domains by encod-
ing action sequences with a conditional VAE, pretraining low-
level policies, and exploiting semantic priors to align states
across tasks. By minimizing the KL divergence between
semantically similar states and exploiting temporal context,
STAR achieves efficient skill transfer across domains.
Another influential line of work uses unaligned video
demonstrations. Reference [159], for example, trained agents
to play Atari by leveraging YouTube videos without direct
domain alignment. Through self-supervised temporal dis-
tance classification and representation learning, their method
enabled human-level performance in challenging exploration
tasks, demonstrating that hybrid IL-RL models can generalize
even from noisy, cross-domain data.
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TABLE 8. Comparison of imitation learning-based approaches for learning manipulation skills from human video.

Method Task Performance Sample Efficiency Compute Cost Embodi. Handling Pros (+) / Cons (-)
[147] High, matches IL Low; needs large Moderate (model- None; needs shared (+) No action labels,
from state-only, no robot  data; not free RL training with  state/action space partial demos; (-) No
actions needed suitable for human  discriminators) human-to-robot trans-
demonstration or fer, no raw vision use
low-data settings
[144] Not applicable;  High; supports  N/A (dataset paper) Human/robot paired (+) Largest video-
introduces a large- low-data learning demos trajectory dataset; (-)
scale multi-task  algorithms Limited  real-world
dataset variety, kinesthetic
only
[155] Good; achieves robust ~ High; one-shot imita-  High (graph  Strong; dynamic  (+) One-shot, no
performance  using  tion, no robot data re-  generation, matching  graph aligns  instrumentation;
graph-structured quired at test time over time, entity hand/object (-)  Needs reliable
perception from a detectors) keypoints keypoint  detection,
single human video compute heavy
demonstration
[143] High; effective at one-  Moderate; needs di- Moderate (encoder  Partial; (+) General/one-shot;
shot imitation in sim-  verse pairs for train- + BC + embedding  generalization by (-) Sensitive to do-
ulation using image- ing; efficient at test loss) visual embedding main gap, real-world
based embeddings time due to embed- untested
ding reuse
[150] High, strong across  Moderate; shared High (transformer, Partial; generalizes (+) Unified policy,
7 tasks, 61 using a transformer, task data  temporal loss) robot arms, not generalizes; (-)
unified transformer-  needed human-to-robot Complex  pipeline,
based policy demo diversity
required
[10] Good; 44% zero-shot — Moderate;  requires Moderate  (ResNet  Strong; (+) Flexible input,
success on 24 unseen  thousands of encoders + FiLM video/language strong generalization;
real-world tasks using ~ demos, few/zero-  conditioning + BC) embedding bridges () Needs quality
video/language input shot efficient after modalities pretrained
pretraining embeddings
[154] Moderate, learns re- Low;video +environ-  High (reward learn-  Weak; learning sen-  (+) Autonomous re-
ward from online hu- ment interaction for ing, video encoding, sitive to visual mis- ward from video; (-
man video for RL reward inference and RL) match ) Artifacts/noise hurt
training policy
[5] High; strong one-shot ~ High; only one test- High (MAML opti- Moderate; domain- (+) Fast adaptation,
performance on sim time demonstration  mization, visual en-  adaptive feature  flexible input; (-)
and real-world robotic  required after  coder, adaptation at  aligns human-robot Needs meta-training,
tasks using gradient-  meta-training on inference) paired modalities
based adaptation human+robot data
[152] High; 58%  High; avoids expert Moderate (inverse, Strong; masking + (+) Robust/scalable,
improvement in real-  robot demos by using  BC, masking) camera perspective no robot demo; (-)
world manipulation inverse model trained closes gap Masking can omit
on play data to label context
human videos
[149] High; real and simula- ~ High; no expert de- Moderate-high Moderate; learns  (+) Unsupervised,
tion tasks via goal im-  mos, needs unsuper-  (exploration, forward  goal-conditioned strong generalization;
ages, no expertactions  vised pretraining consistency) skills during  (-) Relies on
exploration exploration/visual
similarity
[151] Moderate-High; High; few-shot  Moderate; relies on  Moderate; (+) Multi-step one-
achieves multi-step  learning via video few-shot video  generalizes  across  shot, robust reward
task execution from  snippets/meta-learned  classification unseen colors and inference; (-) No
one segmented demo  localization (MAML/Reptile) robot arms, but not real-robot transfer,

+ auxiliary videos

and PPO for policy
training

evaluated on human-
to-robot transfer

sim only

Residual learning further illustrates the utility of hybrid
models, and works such as [157] leveraged it to train a resid-
ual RL agent to refine noisy human hand poses for dexterous
manipulation, with adversarial imitation ensuring corrections
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remain physically plausible. Similarly, [160] introduced
third-person imitation learning, where RL combined with a
GAN-based cost function recovery enabled imitation from
videos with differing viewpoints and embodiments. More
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recent work [161] extends this paradigm by leveraging
task family priors and temporal abstractions extracted from
demonstrations, alongside sampling-based Model Predictive
Control (MPC) for safe trajectory generation.

Overall, hybrid approaches advance robot learning by
combining IL’s efficiency, RL’s adaptability, and modern
perception-control flexibility. This synergy enables robots to
learn robust skills from a few demonstrations, transfer across
domains and embodiments, and adapt policies online—
bringing real-world deployment closer.

Table 9 shows that hybrid models, integrating RL and IL,
handle noisy demonstrations, sparse rewards, and domain
adaptation well, excelling in cross-domain and viewpoint-
variant tasks. However, they introduce design complexity and
lack broad real-world validation. Overall, hybrid methods
strike a balance between RL and IL strengths but remain best
suited for simulation or moderately complex tasks.

E. MULTI-MODAL APPROACHES

Robotic manipulation in unstructured environments requires
the ability to interpret complex sensory signals and ground
them in actionable policies. Relying on vision alone is
often insufficient, as tasks typically involve abstract goals,
contextual reasoning, or subtle cues that exceed purely visual
perception. To address this, researchers have increasingly
turned to multi-modal approaches (as shown in Figure 7,
where vision is combined with other input streams such
as touch, proprioception, and, notably, natural language.
By leveraging these complementary modalities, robots gain a
richer and more holistic understanding of manipulation tasks,
enabling them to follow nuanced instructions, reason about
interactions, and generalize to unseen scenarios.

1) VISION-LANGUAGE GROUNDING

The earliest wave of vision-language methods focused on
establishing a direct connection between natural language
instructions and robotic action. For instance, [163] fused
natural language instructions with scene images to create
task-specific embeddings that guided a policy network in gen-
erating robot trajectories. To enrich semantic understanding,
the model leveraged a video-based action classifier trained
on the Something-Something dataset [83], aligning robot
behavior with human demonstrations.

Before that, some researchers approached the topic from
the standpoint of commonsense reasoning in robotics.
Reference [164] combined attention-based VLMs with
ontology systems to represent manipulation concepts in time-
independent semantic structures. Their introduction of the
Robot Semantics Dataset and spatial attention mechanisms
for action captioning laid the foundation for knowledge-graph
reasoning in manipulation.

There has also been progress with methods that linked low-
level perception to higher-level linguistic descriptions. For
example, [165] proposed a dual-model architecture: a grasp
detection network (GNet) that computed object grasps and
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a captioning network (CNet) that translated demonstration
videos into commands. Here, language was not only a
means of communication but also a scaffold for structuring
perception and action.

Building on these ideas, works such as Watch and
Act [166] introduced pipelines where video captioning and
robot planning were tightly coupled. Demonstration videos
were first converted into textual instructions, which were then
grounded in visual perception modules (e.g., segmentation)
and executed through RL-based controllers. This marked a
shift toward systems capable of seamless transitions from
naturalistic demonstrations to executable actions.

Generalization has also been an active focus in vision-
language learning. Reference [167], for instance, enabled
robots to perform zero-shot imitation of both single-agent
and collaborative tasks from YouTube videos. Instead of
generating commands, their framework constructed action
grammars and action trees, providing a structured yet
flexible approach to representing novel behaviors. These
advances highlight the progression from basic grounding of
instructions to more scalable frameworks that support open-
ended learning.

2) VISION-ACTION ALIGNMENT VIA MULTI-MODAL
REPRESENTATIONS

While grounding language in perception was a critical first
step, recent advances extend beyond mapping words to
actions toward building unified multimodal representations.
These approaches jointly embed videos, states, and textual
instructions into shared spaces for reasoning and control [15],
[16]. This integration moves the field from task-specific
pipelines to generalizable frameworks that bridge perception
and action more seamlessly.

Early attempts at such alignment explored direct trans-
lation of demonstrations into robot instructions. Refer-
ence [168] employed CNNs and RNNs to convert visual
features into grammar-free command descriptions, demon-
strating how semantic comprehension could augment tra-
ditional imitation learning. Subsequent approaches like
Vid2Robot [169] refined this idea by using cross-attention
to align video prompts with a robot’s state, with contrastive
losses ensuring robust representation learning. These works
underscored the value of multi-modal alignment in support-
ing long-horizon reasoning and motion transfer.

The ability to predict future dynamics further broadened
the scope of these models. Reference [170] proposed
predicting “general flow” 3D trajectories of object points
from RGB-D video and language input, enabling skill
transfer across embodiments and morphologies. Similarly,
[130] leveraged transformers for one-shot imitation from
videos, introducing an inverse dynamics loss to stabilize
self-attention and improve policy adaptation. Together, these
models illustrate a progression from mapping demonstrations
to generalizable trajectory prediction.
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TABLE 9. Comparison of hybrid approaches for learning manipulation skills from human video.

Method Task Performance Sample Efficiency Compute Cost Embodi. Handling Pros (+) / Cons (-)

[160] Succeeds on Efficient: no  Moderate: adversar-  Explicit; learns  (+) Unsupervised, no
pointmass, reacher, action/state alignment  ial training + domain  domain-agnostic action labels, handles
and inverted  needed confusion features domain gap; (-) Sim-
pendulum (via ple tasks only
3rd-person  demos)
tasks

[159] Achieves and  Very efficient: single  High: deep  Strong; domain-  (+) Solves sparse-
surpasses human-  video demo is suffi- self-supervised invariant video  reward/complex
level in difficult cient embeddings + RL  embeddings tasks,  robust to
Atari games (e.g., training visual gap; (-) Heavy
Montezuma) from compute,  complex
video train

[118] Learns high-  Efficient: uses public =~ High: deep pose es- Robust; physics- (+) Learns from
fidelity dynamic  video data, minimal timation + RL with  based policy handles  unstructured video,
skills ~ (locomotion,  motion capture adaptive curriculum noise retargets  skills;  (-)
acrobatics) Needs good pose est.,

sim only

[157] Improves success  Needs mocap data for ~ Moderate  (model-  Residual policy cor-  (+) Physics-based, ro-
in  dexterous VR initial training, but free hybrid RL rects pose errors bust to estimation er-
manipulation and less than full demo + IL, hand pose rors; (-) Needs mocap
in-the-wild hand  collection estimation) dataset for train
tracking

[158] Matches demo-  Very efficient: <3  Moderate (semantic  Robust; semantic im-  (+) No in-domain de-

accelerated RL for
long-horizon kitchen
tasks

minutes human video
enables long-horizon
skill transfer

skill extraction, RL)

itation, cross-domain

mos, scalable, gener-
alizes; (-) Needs of-
fline skill extraction

[161] High; enables  Highly efficient: sin-
one-shot fabric  gle demo + sim prior
manipulation  from  needed
video

Moderate: sim pre-
training + MPC for
policy optimization

No strict sim-to-
real; scene-level
alignment

(+) No risky real-
world explore,
efficient; (-) Focused
on fabric, needs scene
prior

[156] Outperforms SOTA in ~ Sample-efficient due  Moderate (CNN
pouring task imitation  to self-supervised  encoder + attention
(lower error, fewer it- and attention-guided  module + RL)

erations)

feature learning

Attention-guided:
view/background
invariant

(+) Robust to clut-
ter, learns focused fea-
tures; (-) Needs multi-
view, task-tuning

With internet-scale video data becoming available, gen-
erative architectures have pushed multi-modal learning
into broader domains. Reference [171] trained an image
transformer with a conditional variational autoencoder (C-
VAE) to anticipate human actions and object interactions
from diverse online videos. The resulting model achieved
zero-shot transfer to novel lab settings, demonstrating the
potential of pretraining on open-world data. Building on
this principle, PLanning-EXecution (PLEX) [172] introduced
a planner-executor transformer framework that separates
high-level activity sequencing from low-level action execu-
tion, supporting multi-task generalization even in low-data
regimes.

Taken together, these advances chart a clear trajectory:
from early instruction-to-action systems to transformer-based
architectures unifying vision, language, and action, and
finally to large-scale pretraining for robust generalization.
Multi-modal representations have become a cornerstone
of next-generation robotic intelligence, enabling ground-
ing, abstraction, and synthesis for versatile real-world
manipulation.
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Table 10 highlights the strong ability of these methods
to integrate vision, language, and sometimes other modal-
ities, supporting flexible, language-driven, and zero-shot
manipulation. They excel at generalization, especially for
long-horizon and open-vocabulary tasks, but face challenges
in model complexity, data demands, and training cost. Thus,
while powerful and general, multi-modal approaches remain
constrained by the need for rich datasets and significant
computational resources.

3) MULTI-MODAL TRANSFORMERS AND LARGE-SCALE
FOUNDATION MODELS

While early multi-modal approaches established the fea-
sibility of combining perception, action, and language,
their scalability remained limited. The arrival of large-scale
transformer architectures and language-conditioned policy
models has since transformed the landscape, providing the
representational capacity and flexibility needed to tackle
long-horizon, multi-task robot learning. These advances are
driven by acommon intuition: that transformer-based models,
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FIGURE 7. Evolution of multi-modal architectures in robot learning - Left: vision-language grounding, (Middle): vision-action alignment
with shared embeddings, and Right: large-scale transformer-based foundation models (VLAs).

pretrained on diverse multimodal data, can capture the
temporal, semantic, and structural regularities necessary for
robust manipulation policies.

Initial breakthroughs demonstrated the power of hier-
archical attention mechanisms for grounding multimodal
signals. Hierarchical Universal Language Conditioned Poli-
cies (HULC) [173], for example, employed a hierarchical
transformer encoder with contrastive alignment of video and
language embeddings to support long-horizon manipulation.
Evaluated on Composing Actions from Language and Vision
(CALVIN) [174], HULC achieved strong generalization
across tasks, marking one of the first demonstrations
that multimodal transformers could scale beyond narrow,
single-task pipelines. Building on this foundation, models
such as VisuoMotor Attention (VIMA) [175] introduced
transformer-based architectures that process multimodal
prompts composed of visual and textual tokens. By incorpo-
rating pretrained language models into an encoder-decoder
system, VIMA was able to perform data-efficient policy
learning across a wide range of manipulation tasks, showing
how prompting can unify task specification and execution.
Similarly, DigKnow [176] leveraged LLMs to extract layered
knowledge from scene graphs in human demonstration
videos, enabling retrieval and correction mechanisms that
improve generalization to novel task instances.

A major shift occurred with the adoption of generative
pretraining paradigms. GR-1 [177], for instance, unified
instructions, video observations, and robot states into a single
predictive architecture. By pretraining on massive video
datasets and fine-tuning on robot data, GR-1 achieved state-
of-the-art results on challenging manipulation benchmarks.
Similarly, Video-based Policy learning framework via Dis-
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crete Diffusion (VPDD) [178] demonstrated how discrete
diffusion models could compress video data into latent
tokens, predict future video dynamics, and then fine-tune
with limited robot-labeled data. These approaches estab-
lished video pretraining as a key enabler of scalable robot
learning.

Recent VLA models have pushed these ideas further by
leveraging hundreds of millions of internet videos to endow
robots with broad physical priors and temporal reasoning. For
example, GR-2 [100] was pretrained on 38 million videos
to learn conditional temporal prediction, then fine-tuned on
robot demonstrations to achieve state-of-the-art multi-task
performance (as shown in Figure 2). GROOT N1 [101]
extended this idea with a latent action codebook, enabling
even action-less human videos to be repurposed as robot
data. By generating synthetic ‘“‘neural trajectories” through
video generation models, it amplified its training corpus
dramatically and, with a diffusion transformer, achieved
robust multimodal control across diverse robots. Other
models have explored new mechanisms for integrating human
video data into robot learning. CoT-VLA [107] introduced
a visual chain-of-thought framework, predicting subgoal
images before producing corresponding actions. This allowed
training on large-scale human activity datasets such as Epic-
Kitchens, despite the lack of action annotations, improving
long-horizon reasoning. Gemini Robotics [108], meanwhile,
extended Gemini 2.0 with an Embodied Reasoning (ER)
layer. By training on massive web video corpora, it acquired
structured perception primitives, such as 3D object detection,
grasp prediction, and trajectory reasoning, that could be
adapted to novel tasks with only in-context prompting or
minimal fine-tuning.
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TABLE 10. Comparative analysis of vision-language grounding and vision-action alignment approaches for learning manipulation skills from human

video.

Method Task Performance Sample Efficiency Compute Cost Embodi. Handling Pros (+) / Cons (-)

[168] Strong  hierarchical  Efficientdue to hierar-  Moderate (modular  Partial handling via (+) Good Composi-
task  generalization  chical reuse network execution) sub-program abstrac-  tionality and gener-
and adaptation tion ality; (-) Needs task

sketch annotations

[165] Good for long-horizon ~ Needs many demos High due to GCNs Not directly  (+) Task-structure
tasks and temporal reason-  addressed aware; ()  High

ing memory/sample cost

[167] Good zero-shotonun-  Very efficient; human ~ Moderate-high Object- (+) Pure visual imita-
seen tasks due to pre-  video only for most of centric/temporal tion; (-) Needs tempo-
training with human  training cues bridge gap ral coherence
video)

[164] Good for  Relatively data-  Moderate-high Indirect via  (+) Language general-
vision-language efficient due to CLIP pretrained  Vision-  izes; (-) Fails on vague
manipulation feature reuse Language features instructions

[169] High; 20% improve-  Data-efficient; High (large  Contrastive loss/data  (+) Imitate from hu-
ment over BC-Z on  due to paired  transformer with  pairing bridge gap man demos; (-) Data
real robots tasks video/trajectory cross-attention over collection bottleneck

data videos)

[163] High; learns 78 tasks  Efficient: self- Moderate (RL +  Video reward model  (+) Diverse skills from
from human videos; supervised RL, no  supervised imitation;  bridges sim2real unstructured video; (-
strong simulated gen-  teleop demos video classifier ) No real-robot valida-
eralization across in- training) tion, open-loop
structions/scenes

[166] High; validated on 24 ~ Moderate: relies on  Moderate Captioning/modular (+) No expert action
objects, 8 actions, and ~ synthetic data for (captioning, policy reduce gap data, real-world diver-
real robot tasks segmentation; video  segmentation, RL- sity; (-) Pipeline com-

demos for policy based affordance) plexity, caption accu-
learning racy dep.

[170] 81% success across 18 No robot data; trained ~ Low (simple policy;  Verylow gap viaflow  (+) Embodiment-
real-world tasks on human videos only  training cost in flow  affordance agnostic; (-) Less

model) expressive than
trajectories

[130] High; 2x better than  Moderate; needs 1600  Moderate; Partial; visual  (+) Strong generaliza-
prior pick-place base-  demo-context pairs  Transformer-based transfer across  tion via attention; (-)
lines in sim (16 tasks)  across tasks; one-shot  encoder-decoder Sawyer/Panda in sim  Not real-world tested,

at test time with ResNet and needs good alignment
multi-loss  training
(BC + inverse +
keypoint loss)

[171] Good; 50%  High efficiency; uses = Moderate; Strong; hand (+) No lab data, real-
(unconditioned) internet videos only, Transformer-CVAE trajectory mapping  world tested; (-) Pose
and 37% (goal- no robot data; needs  architecture with  with camera  estimate noise, limited
conditioned) real  hand pose estimates inverse  kinematics  transforms, IK precision
robot success controller. Requires

camera calibration

[172] High; SOTA on Meta-  Very high; pretrains  High; Ddual  Moderate; (+) Multi-modal,
‘World/Robosuite on 4500 video demos  Transformer generalizes tasks, but ~ few-shot; (-) High
(100% Lift, ~88% + 375 visuomotor, (planner + executor) assumes fixed robot compute, needs
insert) fine-tune with as few  architecture with  morphology curated data splits

as 10 demos positional encoding

and inverse dynamics
training

Collectively, these works trace a clear trajectory: from hier-
archical multimodal transformers, to prompt-based frame-
works, to generative pretraining, and finally to large-scale
VLA models that leverage internet video at unprecedented
scales. The unifying theme is the shift from narrow,
demonstration-driven learning toward architectures that inter-
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nalize broad physical common sense, temporal dynamics,
and general reasoning. These advances position multimodal
foundation models not just as tools for policy learning, but
as platforms for embodied intelligence with the capacity to
adapt fluidly to new environments and tasks. Despite the
many gains won by these models, Table 11 shows their
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TABLE 11. Comparison of multi-modal transformers and large-scale foundation models for learning manipulation skills from human video.

Method Task Performance Sample Efficiency Compute Cost Embodi. Handling Pros (+) / Cons (-)
[173] SoTA on CALVIN: Moderate; Moderate-high Grounded (+) Many
strong multi-  leverages  relabeled  (multimodal language/vision tasks/flexible; (-
stage, long-horizon  play/language data transformer ) Model/training
manipulation + hierarchical complexity
structure)
[175] SoTA in visuo-motor  Highly data-efficient High  (transformer  Good; 3D scene re- (+) Strong  zero-
multimodal tasks via large-scale  + large multimodal  duces sim2real gap shot; (-) Expensive
pretraining model) train/deploy
[176] High; improves plan-  Efficient (retrieves ~ Moderate (scene  Hierarchical narrows  (+) No retrain;
ning & execution knowledge instead of  graph, LLM, simple  gap (-)  Needs scene
retraining) policy) graph/LLM reliability
[177] SoTA on CALVIN Very efficient (fine- High (GPT-style  Good; finetunes after  (+) Best
and real robot tasks tunes on 10% robot  video transformer) pretraining generalization/few-
(94.9% success) data) shot; -) High

model/training cost

SoTA on Meta-World,
RLBench (both
seen/unseen tasks)

High; learns from
large unlabeled video,
and requires few
labeled demos

High (VQ-VAE,
discrete  diffusion,
multi-stage training)

Visual token space
bridges videos

+) Leverages
internet-scale  data;
(-) Compute heavy;
limited real-robot

High; strong perfor-
mance across simula-
tion benchmarks

trained  on
diverse real-robot
trajectories, human
videos, and synthetic
data

High;

High; dual-system ar-
chitecture with diffu-
sion transformer

Excellent; tightly
coupled VLA
modules

(+) Open-source; (+)
High data efficiency;
(-) Complex model ar-
chitecture

High; capable of com-
pleting 105 manipula-

High; pre-trained on
38 million text-video

High; utilizes large
multimodal model ar-

Good; supports var-
ious robot embodi-

(+) Strong generaliza-
tion; (-) High compute

tion tasks with high  data chitecture ments requirements
success rate
[107] High; outperforms  High; incorporates vi-  Moderate; utilizes 7B Good; trained on  (+) Enhanced

state-of-the-art VLA

sual chain-of-thought

parameter model

robot demonstrations

reasoning capabilities;

models in real-world reasoning for efficient and action-less  (-) Requires fine-
manipulation tasks task execution videos tuning for new tasks
[108] High; excels High; optimized for Moderate; designed Excellent; supports (+) On-device opera-
in dexterous  on-device processing  for local inference on  various robot  tion; (+) Adaptable to
manipulation tasks with minimal compu-  robots embodiments new tasks; (-) Limited

tational resources

to bi-arm robots

comparative extreme compute and data requirements make
them unsuitable for low-resource settings.

IV. COMPARATIVE ANALYSIS BETWEEN THE
APPROACHES

To provide a high-level synthesis of the literature, we present
in Table 12 a macro-level comparison of the primary method-
ological subgroups discussed in this survey. While previous
sections have detailed the specific technical approaches
within each subgroup, this section aims to capture their
overarching strengths, common pitfalls, bottlenecks, and
representative applications.

The chosen metrics’ main advantages, disadvantages, key
bottlenecks, and reported applications reflect the most salient
aspects influencing the applicability and impact of each
subgroup in practical robot learning settings.

The comparative analysis reveals a field grappling with
fundamental tensions between capability and practicality.
At the foundational level, perception approaches illustrate
this tension clearly: CNN-based methods offer computational
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efficiency but sacrifice fine-grained understanding, while
pose/keypoint detection provides structured representations
at the cost of robustness to estimation failures. This same
pattern extends to domain bridging, where image translation
prioritizes visual alignment over action precision, and
context translation emphasizes environmental adaptability
over training efficiency.

These trade-offs become more pronounced as approaches
increase in sophistication. Reinforcement learning methods
exemplify this progression, from computationally expensive
visual RL to hierarchical frameworks that promise com-
positional learning but introduce complex decomposition
challenges. Similarly, imitation learning has evolved from
direct behavioral cloning toward meta-learning approaches
that achieve impressive few-shot capabilities but require
extensive pretraining regimes that paradoxically reduce their
practical accessibility.

The field’s response to these limitations through hybrid
and multi-modal approaches reveals both promise and
deeper challenges. Hybrid methods acknowledge that single
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TABLE 12. Macro-level comparative analysis of video-based robot learning approaches.

Category Advantages Disadvantages Key Bottlenecks Representative Applica-
tions
Foundational Interpretable Limited to holistic fea- Embodiment Hand-object interaction,
Perception &  representations; leverages tures; dependent on esti-  transfer, pose  dexterous grasping,
Representa- large unlabeled datasets; mation accuracy; transla-  estimation human-to-robot
tion Methods real-time capable; enables  tion artifacts; requires di-  robustness, visual transfer, cross-domain
structured motion capture;  verse contextual data; vul-  realism  vs. task  manipulation, assembly
bridges visual domain  nerable to domain shift fidelity, context  tasks
gaps; adapts across generalization
environments
Reinforcement ~ Powerful for long-horizon = High computational cost;  Feature Object manipulation with
Learning tasks; handles complex complex architecture  representation dense rewards, multi-step
Approaches manipulation; enables  design; sensitive  to  quality, reward  assembly, hierarchical
compositional  learning;  reward engineering;  signal design, task  manipulation, tool use
grounds policies in  challenging hierarchical  decomposition, learning,  compositional
structured representations;  decomposition; requires  hierarchical learning  skill learning
supports multi-task  extensive interaction data stability
generalization
Imitation Direct demonstration use;  Distribution mismatch  Demonstration One-shot imitation, few-
Learning sample efficient; rapid issues; requires ~ coverage, meta-  shot manipulation, rapid
Approaches skill acquisition; enables  extensive meta-training; learning stability,  task adaptation, human
few-shot  generalization; embodiment  mismatch  domain gap bridging, video imitation, cross-
works with raw video challenges; sensitive to embodiment embodiment transfer
data; leverages web-scale  demonstration quality;  alignment, visual
demonstrations limited generalization ~ domain shift
beyond training
Hybrid Combines RL/IL  Increased design  Integration Noisy demonstration
Approaches strengths; robust  to  complexity; challenging complexity, learning, online policy
demonstration noise;  balance optimization;  multi-objective refinement, cross-domain
addresses  cross-domain  complex pipeline design; learning, cross-  skill transfer, adaptive
challenges; enables online  limited real-world  domain  alignment, imitation, robust policy
refinement; flexible  validation; task-specific ~ multi-component learning
adaptation mechanisms solutions integration, real-
world deployment
Multi-Modal Natural language task Requires paired  Language-vision Language-guided manipu-
Approaches specification; unified multimodal data; high  alignment, lation, trajectory predic-
representations; internet-  model complexity;  multimodal tion, general manipulation
scale pretraining; broad extremely high compute representation policies, zero-shot task ex-
physical common sense; requirements;  sensitive learning, ecution, embodied reason-
supports in-context  to language ambiguity; computational ing
learning; enables zero-  deployment challenges scalability, data
shot generalization curation, model
interpretability

paradigms are insufficient, yet their attempt to combine
multiple learning objectives often creates complex, task-
specific solutions that resist broader generalization. Multi-
modal approaches, particularly large-scale foundation mod-
els, represent the current apex of capability but exacerbate the
accessibility problem by requiring computational resources
beyond most practitioners’ reach.

This evolution exposes a central paradox: the most capable
methods are becoming increasingly inaccessible, while
practical approaches face fundamental limitations in handling
the embodiment transfer problem that persists across all
categories. The field has not solved this core challenge but
rather developed increasingly sophisticated ways to work
around it, often at the cost of practical deployability.

The implications are clear: method selection cannot be
driven solely by theoretical performance but must account
for the specific constraints of computational resources,
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data availability, and deployment requirements. Rather than
seeking universal solutions, the field is converging on
a recognition that different approaches occupy distinct
positions in a multi-dimensional trade-off space, making the
matching of methods to specific scenarios the critical skill for
practical robot learning applications.

V. OPEN-SOURCE TOOLS FOR VIDEO-BASED ROBOT
MANIPULATION LEARNING

In this section, we discuss and provide an overview of open-
source implementations, frameworks, tools, and datasets
that constitute the foundation of modern video-based robot
manipulation learning. The resources cataloged herein in
table 13 to 18, span the entire learning pipeline, from
foundational visual representation models that serve as the
perceptual backbone of a system, to sophisticated end-to-
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end VLA policies that map raw pixels and natural language
commands directly to robot motor commands.

VI. CHALLENGES

Learning from video demonstrations presents several per-
sistent challenges that cut across all major methodological
subgroups. While remarkable progress has been made,
limitations remain at both the data and model levels, and
many of these challenges directly constrain the practical
impact of state-of-the-art methods. This section identifies
and discusses six key challenges in learning from video
demonstrations, expanding on: (1) data availability and
annotation, (2) domain shift and embodiment gap, (3)
computational cost and scalability of learning architectures
and resources, (4) model sample efficiency, (5) evaluation
and benchmarking, and (6) causal reasoning and policy
abstraction.

A. DATA AVAILABILITY AND ANNOTATION

The performance and generalization of video-based robot
learning models remain highly dependent on the availability,
diversity, and quality of demonstration data. As high-
lighted in our analysis, many approaches, especially feature
extraction and imitation learning struggle when exposed
to unfamiliar states or objects not seen during training.
Large, balanced datasets are rare, and most existing datasets
(e.g., EPIC-Kitchens [185], Something-Something [83]) are
often domain-specific, unbalanced, or require expensive
annotation. Specialized datasets such as Penn Action [186],
HMDBS51 [187], and MPII [188] are often limited in their
diversity or designed for narrow, non-robotic tasks. Further-
more, several methods (e.g., Demo2Vec [52], ViP [141])
depend on expert-labeled demonstrations, further limiting
their scalability in real-world scenarios. The community
increasingly turns to scalable alternatives, such as leverag-
ing uncurated internet videos, weak supervision, or self-
supervised objectives, to address these data bottlenecks, but
progress is ongoing.

B. DOMAIN SHIFT AND EMBODIMENT GAP

Domain shift remains a fundamental challenge across all
subgroups. The disparity between human and robot domains,
the so-called embodiment gap, often hinders the direct
transfer of skills, as the visual appearance, dynamics,
and even the action spaces differ substantially. Although
some methods leverage domain-invariant or domain-adaptive
features, as seen in hybrid, multi-modal, and image/context
translation approaches, the problem is far from solved.
Translation artifacts, imperfect pose estimation, and mis-
aligned action representations can severely limit sim-to-real
or human-to-robot transfer. Approaches like adversarial
learning, keypoint-based transfer, and CycleGANs offer
partial solutions, but robust, generalizable transfer remains
elusive.
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C. COMPUTATIONAL COST

Computational cost is an increasingly pressing concern,
especially with the adoption of large-scale, multi-modal,
and transformer-based architectures. While these models
enable impressive performance, their high computational
and memory requirements can limit real-world deployment,
especially on resource-constrained robotic platforms. Many
state-of-the-art methods (e.g., multi-modal and large-scale
models III-E) demand substantial GPU resources for training
and inference, hindering their use in real-time or edge
settings. Furthermore, efficient scaling in both model size and
data remains a bottleneck, with challenges in data collection,
curation, and model parallelization.

D. SAMPLE EFFICIENCY

Although progress has been made, particularly with meta-
learning, contrastive objectives, and one/few-shot imitation,
the demand for large volumes of video data remains a core
challenge, especially for RL-based and high-capacity models.
Many algorithms still require thousands of demonstrations
or millions of interaction steps, which can be prohibitive
in real-world settings. While approaches like feature extrac-
tion III-Al, goal-conditioned RL III-B, and some hybrid
models III-D are relatively more data-efficient, the quest
for robust learning from minimal or weakly-labeled data
is ongoing. Bridging this gap is crucial for broadening
the applicability of video-based robot learning in low-data
regimes.

E. EVALUATION METRICS AND BENCHMARKING

A critical challenge identified across the literature is the
lack of standardized evaluation metrics and benchmarking
protocols for video-based robot learning. Unlike computer
vision or natural language processing, where large-scale
public benchmarks drive progress, robotics evaluations are
often fragmented and task-specific, relying on human judg-
ment, custom setups, or bespoke datasets. This fragmentation
complicates fair comparisons between approaches and slows
the pace of reproducible progress. There is a growing
need for community-driven, standardized benchmarks and
clearly defined metrics that capture not only task suc-
cess but also generalization, robustness, and sim-to-real
performance.

F. CAUSAL REASONING AND POLICY ABSTRACTION

A final major bottleneck, as surfaced in our comparative
analysis, is the limited capacity of current methods to perform
causal reasoning and high-level policy abstraction from video
data. Most approaches focus on pattern recognition, goal
inference, or direct imitation (see Section III), rarely incorpo-
rating causal structure or relational reasoning about actions
and outcomes. As a result, models may lack robustness
when faced with novel tasks or environments that require
understanding of underlying cause-and-effect relationships.
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TABLE 13. Foundational visual representation learning resources.

TABLE 14.

Bridging this gap will likely require new architectures and
training paradigms that integrate causal inference, model-
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Resource Name

Primary Function

Key Features

Open-Source Link

Time-Contrastive
Networks (TCN) [35]

Spatiotemporal
Contrastive Video
Representation Learning
(CVRL) [44]

Dense Predictive Coding
(DPC) [39]

Masked  Visual
training (MVP) [45]

Pre-

Self-Supervised
Representation Learning

Self-Supervised
Representation Learning

Self-Supervised
Representation Learning

Self-Supervised
Representation Learning

e Learns viewpoint-invariant features from
multi-view video

o Uses a time-contrastive triplet loss

e Focuses on temporal dynamics over static ap-

pearance

o Learns spatiotemporal features via contrastive
loss

o Employs temporally consistent spatial aug-
mentations

o Outperforms ImageNet pre-training on video
tasks

o Predicts future latent representations, not pix-
els

e Learns dense spatio-temporal block embed-
dings

o Uses curriculum learning to predict further in
time

o Extends Masked Autoencoders (MAE) to
robotics

o Pre-trains on large image/video datasets

o Frozen encoder serves as perception module
for control

https://github.com/
kekeblom/tcn

https://github.com/
tensorflow/models/
tree/master/official/

https://github.com/
TengdaHan/DPC

https://github.com/
ir413/mvp

R3M[47] Ee?llt\:;r 2?11 Visual Repre o Pre-trained on Ego4D human video dataset Eggls/\flevtlif‘ogb%(;—gr]gm
e Combines time-contrastive and video-
language learning
o Serves as a frozen perception module for ma-
nipulation
3D hand & body modeling resources.

Resource Name

Primary Function

Key Features

Open-Source Link

SMPL [76]

MANO [75]

FrankMocap [73]

Parametric 3D Body
Model
Parametric 3D Hand
Model

Monocular Motion Cap-
ture System

o Learned from thousands of 3D body scans

o Low-dimensional shape and pose parameteri-
zation

o Compatible with standard graphics engines

o Specialized parametric model for the human
hand

o Integrates with SMPL to form SMPL+H

o Enables detailed, articulated hand modeling

o Real-time 3D hand and body motion capture
from single RGB video

o Leverages SMPL-X for unified parametric out-
put

o Enables data extraction from
videos

in-the-wild

https://smpl.is.tue.
mpg.de/

https://mano.is.tue.
mpg.de/

https://github.com/
facebookresearch/
frankmocap

based reasoning, or neuro-symbolic methods, as well as
datasets that explicitly capture causal interactions.
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TABLE 15. Affordance & interaction resources.

Resource Name

Primary Function

Key Features

Open-Source Link

AffordanceNet [54]

Demo2Vec [52]

Vision-Robotics Bridge
(VRB) [53]

Affordance Detection

Affordance Reasoning

Affordance Grounding

End-to-end object and affordance detection
from RGB-D

Uses a multi-task, two-branch architecture
Segments pixels into functional categories
(e.g., "grasp")

Learns video embeddings to reason about af-
fordances

Predicts interaction heatmaps and action labels
on a target image

Trained on YouTube product review videos

Learns agent-agnostic affordances from hu-
man videos

Predicts contact heatmaps and post-contact tra-
jectories
Integrates
paradigms

with multiple robot learning

https://github.com/
wliu88/affordance_
net

https://sites.google.
com/view/demo2vec/

https://
robo-affordances.
github.io/

TABLE 16. Vision-language-action (VLA) policies.

Resource Name

Primary Function

Key Features

Open-Source Link

RT-1 [14]

RT-2[15]

CLIPort [12]

VIMA [175]

Transformer-Based Pol-
icy

Vision-Language-Action
Model

Language-Conditioned
Imitation

Multimodal
Agent

Prompting

End-to-end Transformer for multi-task control
Tokenizes images, language, and actions
Trained on 130k+ real-world robot trajectories

Fine-tunes web-scale VLMs for robotic con-
trol

Represents robot actions as text tokens
Transfers semantic knowledge from web data
to robotics

Two-stream architecture: semantic (CLIP) and
spatial (Transporter)

Combines "what" (language) and "where" (af-
fordance)

Generalizes to unseen objects without explicit
detectors

Generalist Transformer agent for diverse tasks
Unifies task specification via multimodal
prompts (text + vision)

Trained on 600k+ expert trajectories in VIMA-
Bench

https://github.com/
google-research/
robotics_transformer

https://github.com/
kyegomez/RT-2

https://cliport.github.
io/

https://vimalabs.
github.io/

VIl. FUTURE OUTLOOK

These challenges, distilled from a broad cross-section
of the literature and subgroup analysis, highlight that
progress in video-based robot learning is not uniform; each
methodological paradigm offers distinct strengths but also
faces recurring limitations. Addressing these bottlenecks,
particularly in data transfer, scalability, and abstraction, will
be key to achieving robust, generalizable, and efficient robot
learning from videos in the future.
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As discussed in previous sections, various approaches have
been proposed for learning manipulation skills through
video demonstrations. We also explored the challenges
and limitations of learning from videos. This section will
spotlight several promising but relatively underexplored
areas in video-based learning research. These areas include
data efficiency, interactive and active learning, multi-task
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TABLE 17. Datasets & simulators.

Resource Name Primary Function

Key Features

Open-Source Link

https://github.com/

Unifies 60+ datasets from 22 robot embodi-

IM+ real robot trajectories in standardized
RLDS format
Enables training of generalist "X-robot" poli-

Open  X-Embodiment  Cross-Embodiment
(OXE) [16] Dataset
ments
cies
DROID [88] In-the-Wild

BridgeData V2 [

1

Manipulation Dataset

Multi-Task
Manipulation Dataset

76k+ trajectories from 50+ global users
Collected in 564 diverse, unstructured scenes
Designed for studying real-world generaliza-
tion

60k+ trajectories on a low-cost WidowX robot
Spans 24 environments and 13 skills

Includes language and goal-image condition-
ing

15M video frames from 7 different robot plat-

Early large-scale effort to share robotic expe-

Designed for learning generalizable vision-
based models

110k+ sequences focusing on contact-rich

Rich multi-modal data (vision, force, audio,

Includes paired human demonstration for each
robot sequence

High-performance simulator for massively

Enables training policies directly on GPU
Developed by NVIDIA

Fast and accurate physics simulation

Widely used for robotics, biomechanics, and
RL research

Features optimization-based contact dynamics

RoboNet [ 18] Multi-Robot Video
Dataset
forms
rience
RH20T [19] Contact-Rich Manipula-
tion Dataset .
skills
action)
Isaac Sim [179] GPU-Based Physics Ap-
licati
prcation parallel RL
MuJoCo [180] Physics Engine
PyBullet [181] Physics Simulator

Python module for the Bullet physics engine
Provides robotics simulation and RL environ-
ments

Open-source and widely accessible

google-deepmind/
open_x_embodiment

https://droid-dataset.
github.io/

https://rail-berkeley.
github.io/bridgedata/

https://www.robonet.
wiki/

https://rh20t.github.
io/

https://developer.
nvidia.com/isaac/sim

https://mujoco.org/

https://pybullet.org/

learning architectures, integration of causal reasoning, and
the development of evaluation metrics and benchmarks.

A. TACKLING DATA EFFICIENCY AND AVAILABILITY
Addressing the challenges discussed in Section VI-A regard-
ing data availability and annotation is crucial. Works such
s [14], [15], [16], [17], [18], [19] have made dedicated
efforts to collect extensive data for training robots in various
skills. While these endeavors contribute valuable datasets,
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video demonstrations offer unique advantages compared
to task-specific datasets. Despite the risk of introducing
biases, video data provides a more unbiased and diverse
representation of real-world scenarios, fostering improved
generalization. Additionally, videos capture realistic dynam-
ics and environmental variability, enabling models to better
handle uncertainties and variations encountered in real-world
scenarios.

As discussed in Section VI-A, poor generalization may
lead robots to struggle with tasks in states not adequately
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TABLE 18. Core libraries.

Resource Name Primary Function

Key Features

Open-Source Link

OpenCV [182] Computer Vision Library
MediaPipe [183] Perception Pipeline
Framework

OpenPose [184] 2D Pose Estimation

De facto standard library for real-time im-
age/video processing

Provides a vast suite of foundational CV algo-
rithms

Underpins most vision-based robotics research

Cross-platform framework for applied ML
pipelines

Offers pre-trained models for pose, hand, and
face tracking

Used as off-the-shelf perception components

Real-time multi-person 2D keypoint detection
Detects body, hand, foot, and facial keypoints

https://opencv.org/

https://developers.
google.com/
mediapipe

https://github.com/
CMU-Perceptual-Computing-Lab/
openpose

o Widely used for human activity analysis

covered during training. Generalization is a pervasive topic in
deep learning, and several works, including [14], [141], [150],
propose techniques for learning from videos to enhance
model generalization across diverse robots, tasks, and states.
However, current approaches still have limitations in their
generalization, particularly to tasks not recorded in the video
demonstration data. Future work should focus on addressing
this limitation by identifying intuitive methods to ensure not
only generalization but also quick adaptation of these models
to changing tasks and environments.

B. IMPROVING DATA ANNOTATION THROUGH ACTIVE
LEARNING

Ensuring high-quality data for training models is crucial.
Active learning strategies, such as those proposed by [189]
and [190], empower robots to strategically select informative
data points, optimizing the learning process by Intelligently
querying labels on challenging instances. This approach
reduces the reliance on extensive labeled datasets while
maintaining or improving performance.

Current approaches often passively observe large demon-
stration datasets [83], [185], which can be expensive to
scale up. Integrating active physical trials on real robots
alongside video data observation combines the strengths
of imitation learning and embodied reinforcement learning.
This approach helps bridge the reality gap by incorporating
interactions in physical environments, dynamic feedback,
and recalibration of visual interpretations. It allows robots
to adapt to environmental changes, providing signals when
contexts shift and offering opportunities for adaptation.
Passive video datasets often lack diversity across potential
deployment environments, making the inclusion of physical
interactions valuable. This approach not only enables the
robot to learn what works but also what doesn’t work well
in different situations.
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While studies like [156] and [149] have proposed related
techniques, they have not thoroughly explored grounding
policies learned from video data in physical environments.
Future works could benefit from addressing these points.

C. TACKLING DOMAIN SHIFT

Future work should focus on addressing the persistent
challenge of domain shift between human and robot domains.
Works like [191] addressed domain shift in the context of
appearance changes in outdoor robotics with adversarial
domain adaptation, while [192] presented a survey in
learning for robot decision making under distribution shift.
Advanced domain adaptation techniques, including adversar-
ial training and meta-learning, could create more robust and
generalizable models. Multi-modal learning strategies that
incorporate additional sensory inputs may reduce reliance
on visual domain translation. Sim-to-real transfer methods
and continual learning paradigms offer promising avenues
for improving domain adaptation. Investigating attention
mechanisms, unsupervised techniques, and transformer-
based architectures could yield more effective domain-
invariant features. Additionally, exploring causal reasoning
and few-shot learning approaches may enhance the efficiency
of skill transfer from human demonstrations to robotic
applications. By pursuing these strategies, future research
can work towards mitigating the impact of domain shift
and improving the effectiveness of learning from videos for
robotic manipulation tasks.

D. INTRODUCING EMERGING TECHNIQUES AND
ARCHITECTURES

The techniques employed in the studies outlined in Section
IIT predominantly rely on single modalities or involve
single-task architectures. Recent research emphasizes the
efficacy of learning from multiple tasks and modalities [193],
[194], [195], [196]. Studies like [141] and [150] discussed
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in Section III underscore the effectiveness of multi-task
learning for acquiring robot manipulation skills from videos.
Challenges inherent in multi-tasking, extensively explored
in studies like [197], become more pronounced due to the
varying optimization constraints between predicting actions
from fixed videos and closed-loop control problems.

Furthermore, the pursuit of learning manipulation skills
from video has spurred the development of increasingly
sophisticated generative architectures. These models have
moved beyond simple regression or classification to generate
complex, high-dimensional outputs like action trajectories
and future video frames. The leading emerging architectural
paradigms include diffusion models and world models.

Diffusion generative models have rapidly emerged as a
dominant force in robotics, prized for their ability to model
complex data distributions and their robustness in high-
dimensional spaces [198]. Their application to visuomotor
control represents a significant step forward from prior gen-
erative approaches. Diffusion Probabilistic Models (DMs)
operate on a simple yet powerful principle, executed in two
stages [198]. The first is a fixed forward process, where
Gaussian noise is progressively added to a data sample (e.g.,
an image or an action trajectory) over a series of timesteps,
gradually corrupting it into pure noise. The second stage is
a learned reverse process, where a neural network, typically
a U-Net or a Transformer, is trained to reverse this noising
process. By learning to predict and remove the noise at each
step, the model can start with a random noise tensor and
iteratively denoise it to generate a new, high-fidelity sample
from the original data distribution [199].

A key advantage of this framework for robotics is its
inherent capacity to model multi-modal distributions [198].
Many manipulation tasks do not have a single correct
solution; there can be multiple valid trajectories to pick
up an object or open a drawer. Traditional methods that
predict a single, unimodal output (e.g., by minimizing mean
squared error) tend to average these possibilities, resulting in
mediocre or invalid actions. Diffusion models, by contrast,
can capture the full distribution of successful behaviors,
allowing them to generate diverse and plausible action
sequences at inference time [199].

This capability has been elegantly harnessed in the
“Diffusion Policies” framework for imitation learning [199].
In this paradigm, the model learns a policy that generates
robot actions directly from visual observations. The policy
is a diffusion model trained to denoise an action trajectory
conditioned on the current visual state of the environment.
At each step of the reverse process, the model refines its
prediction of the entire action sequence, leading to temporally
coherent and precise behaviors [200].

While diffusion policies excel at learning direct mappings
from observations to actions, a parallel and complementary
approach involves learning a predictive model of the world
itself. These ‘“world models” enable an agent to plan
and reason by simulating the future consequences of its
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actions internally, a process often referred to as “‘imagining”’
[112]. A world model learns the transition dynamics of
an environment, formally represented as the probability
distribution p(s;+1|s;, a;), where s is the state and a is the
action. By repeatedly applying this learned model, an agent
can forecast entire trajectories of future states that would
result from a sequence of actions. This predictive capability
is the foundation for model-based planning, where the agent
can search for the optimal action sequence within its learned
model before executing it in the real world. This approach
can be significantly more sample-efficient than model-free
methods, which must learn through extensive trial-and-error
in the physical environment [201].

A powerful and intuitive instantiation of a world model
is a video prediction model. Here, the state s is represented
by an image or a sequence of images, and the world model
learns to generate future video frames conditioned on a
sequence of actions. Mani-WM [202] is a prime example
of this approach, leveraging a diffusion transformer to
generate high-resolution, long-horizon videos of a robot arm
executing a specified action trajectory. The model employs
a novel frame-level conditioning technique to ensure precise
temporal alignment between the generated frames and the
input actions. The resulting learned model serves as a high-
fidelity, interactive simulator. This allows for downstream
applications like policy evaluation and model-based planning
to be conducted entirely with the generative model, mitigating
the cost, safety concerns, and labor associated with extensive
real-world robot rollouts [202].

E. ROBUST EVALUATION METRICS AND BENCHMARKS
The rapid pace of architectural innovation necessitates
equally rigorous and standardized evaluation methodologies.
A model’s claimed contributions are only as strong as the
benchmarks used to validate them. We discussed below the
most prominent benchmarks in video-based manipulation,
analyzing their strengths, intended research focus, and, criti-
cally, their limitations, particularly concerning the evaluation
of causal understanding.

1) RLBENCH: A TESTBED FOR BROAD SKILL ACQUISITION
RLBench stands as a cornerstone for evaluating the breadth
and generalization of manipulation skills [203]. Its primary
contribution is a massive and diverse suite of 100 unique,
hand-designed tasks simulated in the V-REP (now Cop-
peliaSim) environment. These tasks span a wide spectrum
of difficulty, from simple behaviors like reaching a target
or opening a door to complex, multi-stage sequences like
opening an oven and placing a tray inside.

A defining feature of RLBench is its rich multi-modal
observation space, providing agents with RGB-D images
from both a static over-the-shoulder camera and an eye-
in-hand camera, as well as proprioceptive data like joint
angles and torques. Perhaps its most unique and powerful
feature is the provision of a virtually infinite supply of expert
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demonstrations for every task. These demonstrations are
generated via motion planners operating on pre-defined way-
points, enabling a wide range of research in imitation learning
and reinforcement learning that leverages expert data [203].
The benchmark is explicitly designed to push research in
multi-task learning, meta-learning, and, in particular, few-
shot learning.

2) CALVIN: THE STANDARD FOR LONG-HORIZON
LANGUAGE GROUNDING
While RLBench tests the breadth of skill acquisition,
CALVIN (Composing Actions from Language and Vision) is
the de facto standard for evaluating the depth of long-horizon,
compositional reasoning [174]. CALVIN is an open-source
simulated benchmark, built in PyBullet, designed to develop
and test agents that can solve complex manipulation tasks
specified solely by natural language instructions. A single
agent must learn to understand and execute a sequence of
commands, such as ‘“‘open the drawer, pick up the blue block,
push the block into the drawer, open the sliding door™ [174].
CALVIN’s key contribution is its focus on long-horizon
problems and language-based generalization. The benchmark
includes four distinct environments (A, B, C, D) with shared
structure but different visual textures and object layouts,
allowing for rigorous testing of zero-shot generalization
to novel scenes. The provided dataset is not a set of
isolated, task-specific demonstrations, but rather hours of
unstructured “‘play data,” from which task sequences are
procedurally labeled. This setup mimics a more realistic
learning scenario where an agent must discover skills from
continuous interaction data. Evaluation is performed on the
agent’s ability to generalize to novel language instructions
and to complete long sequences of tasks, which is highly
challenging as it requires the agent to robustly transition
between different subgoals without compounding errors.
Its status as a challenging and well-defined testbed has
made it the proving ground for state-of-the-art models like
VidMan [204].

3) ROBOTUBE: BRIDGING THE HUMAN-TO-ROBOT GAP

A central goal of the field is to enable robots to learn directly
from observing humans. RoboTube is a benchmark designed
specifically to facilitate research toward this goal [205].
It directly addresses the limitations of prior video datasets,
which often lack task complexity or relevance to household
robotics. The RoboTube dataset consists of 5,000 high-
quality, multi-view RGB-D video demonstrations of humans
performing a variety of complex household tasks. These
include the manipulation of not just rigid objects, but also
articulated objects (drawers, cabinets), deformable objects
(cloth), and granular materials (pouring).

The most significant feature of RoboTube is its “‘simulated
twin”’ environment, RT-sim [205]. The objects and scenes
from the real-world videos have been meticulously 3D-
scanned to create photo-realistic, physically accurate digital
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counterparts in simulation. This unique pairing of a real
human video dataset with a high-fidelity simulated testbed
is invaluable. It provides a controlled, reproducible platform
for researchers to develop and benchmark algorithms for key
challenges like sim-to-real transfer, representation learning
from human video, and self-supervised reward learning, with
the confidence that models validated in RT-sim have a clear
path to deployment on a real robot. RoboTube aims to
democratize research in this area by lowering the barrier to
entry and providing a standardized platform for comparing
different approaches to learning from human videos.

The design of a benchmark implicitly steers the research
priorities of the community. The existence of CALVIN has
catalyzed a wave of innovation in long-horizon, language-
conditioned policies [174], while RLBench has standardized
the evaluation of few-shot and multi-task learning [203].
A critical analysis of these leading benchmarks, however,
reveals a significant gap: none of them are explicitly designed
to evaluate an agent’s causal understanding of the world.
An agent can achieve a high success rate on a CALVIN
task by mastering the statistical correlations present in the
massive demonstration dataset. It might learn that pushing
a red button is followed by a light turning on, but it may
not have learned the underlying causal link. This purely
correlational policy would fail if the button’s function were
rewired, an object’s physical properties were altered, or an
unobserved confounder were introduced.

The MVP (Minimal Video Pairs) [206] benchmark,
developed for visual question answering, offers a blueprint
for how to address this gap. MVP consists of pairs of
videos that are minimally different, often with a single
changed detail, accompanied by the same question but with
opposite answers. This design forces a model to move beyond
superficial cues and engage in deeper reasoning to arrive
at the correct answer. This principle must be extended to
robotic manipulation to properly evaluate the benefits of
causal models. A novel and impactful contribution would be
the development of a new evaluation protocol, which could be
termed ““Causal-CALVIN” or “Interventional RLBench.” In
this protocol, an agent would first be trained on the standard
benchmark dataset. Then, its generalization and robustness
would be tested on a suite of evaluation tasks where the
underlying causal structure of the environment has been
perturbed. For example, the mass or friction of an object
could be significantly changed, the causal link between a
switch and a light could be broken or rewired to a different
switch, or a previously free-sliding drawer could be made to
stick. A purely correlational model, having overfitted to the
statistics of the training environment, would be expected to
fail catastrophically. In contrast, a model equipped with an
accurate causal model of the world should be able to either
adapt its policy to the new dynamics or at least recognize that
its model of the world is no longer valid, enabling more robust
and intelligent failure recovery. This provides a concrete,
quantitative methodology for measuring the tangible benefits
of causal reasoning, moving evaluation beyond simple task
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success rates to a more meaningful assessment of physical
understanding.

Table 19 provides a strategic overview of these bench-
marks, enabling the selection of appropriate evaluation
platforms to highlight different facets of a proposed model’s
performance.

F. INTEGRATION OF CAUSAL REASONING

To build robots that can operate robustly and adaptively in the
open world, it is essential to move beyond learning statistical
correlations and toward models that capture the underlying
causal structure of their environment. Consequently, below
we provide a detailed investigation into the principles and
methods of causal reasoning as they apply to video-based
manipulation, establishing the foundation for a research
agenda centered on this critical capability.

The vast majority of modern machine learning models,
including deep neural networks, are powerful function
approximators trained to minimize a loss function on an
independently and identically distributed (i.i.d.) dataset.
This process enables them to excel at learning complex
correlations within the training data. However, correlation
does not imply causation. This fundamental limitation is the
root cause of their brittleness when deployed in the real world,
which is inherently non-stationary and subject to constant
distribution shifts [207]. A robot trained in a lab may learn
a spurious correlation between the color of a block and
its weight, and will fail when presented with a block of a
different color.

Causal models offer a principled escape from this
trap [208]. By aiming to represent the actual data-generating
processes, causal models provide a foundation for true
generalization. A causal model understands that an object’s
mass, not its color, determines the force required to lift it.
This understanding allows for robust performance even when
encountering novel objects and conditions. For robotics, the
promise of causality is threefold: robustness to environmental
changes, generalization to novel scenarios, and the ability to
perform counterfactual reasoning (e.g., “what would have
happened if [ had pushed the object instead of grasping it?””).
Which is the bedrock of intelligent planning and decision-
making [208].

1) METHODS FOR CAUSAL DISCOVERY FROM VISUAL DATA
Causal discovery is the process of inferring the causal
structure (typically represented as a Directed Acyclic Graph,
or DAG) from data [209]. In robotics, this means discovering
the cause-and-effect relationships between objects, actions,
and environmental variables from sensory inputs like video.
These methods can be broadly categorized into observational
and interventional approaches.

o Observational Approaches: Observational methods
attempt to uncover causal structure from passively
collected data, without actively manipulating the sys-
tem. These approaches typically fall into two families:
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constraint-based and score-based methods. Constraint-
based algorithms, like the PC algorithm [209], work by
performing a series of conditional independence tests on
the data to prune edges from a fully connected graph.
Score-based methods define a scoring function (e.g.,
Bayesian Information Criterion) that measures how well
a given graph structure fits the data and then search the
space of possible graphs for the one with the best score.
Applying these methods to high-dimensional video data
requires specialized architectures. The Visual Causal
Discovery Network (V-CDN) [208] is a seminal work
in this area. V-CDN is an end-to-end model that learns
to discover causal relationships in physical systems
directly from video. It consists of three key modules:

1) Perception Module: Extracts an unsupervised, tempo-
rally consistent keypoint representation of objects in
the scene from raw images. These key points serve as
the variables in the causal graph.

2) Inference Module: Observes the dynamics of these
keypoints over a short video sequence and infers a
latent causal graph, determining which keypoints are
causally related (e.g., connected by a spring or a rigid
rod).

3) Dynamics Module: A graph neural network that takes
the inferred causal graph as input and learns to predict
the future evolution of the system.

A crucial aspect of V-CDN is its assumption that
the training data, while passively observed, is sourced
from a variety of configurations and environmental
conditions. This is treated as data from ‘“‘unknown
interventions” on the system [208]. For example,
by observing videos of systems with different numbers
of objects or different spring constants, the model can
disambiguate direct causal links from mere correla-
tions and identify the correct underlying causal graph
without requiring explicit labels for the interventions
performed [208].

Interventional Approaches: While observational
methods are powerful, the gold standard for establishing
causality is intervention: the act of actively manipulating
a variable, denoted as do(X = x), and observing the
effect on the system [210]. Interventions break potential
confounding pathways and provide unambiguous
evidence of cause-and-effect relationships. Robots,
as physically embodied agents, are uniquely positioned
to perform such interventions, making them ideal
platforms for active causal discovery [211].

A powerful demonstration of this principle is SCALE
(Skills from CAusal LEarning) [212]. SCALE addresses
the problem of learning manipulation skills that gen-
eralize across different contexts. Instead of learning
a single, complex policy over a high-dimensional
state space, SCALE uses a simulator as a ‘“‘causal
reasoning engine’’ to perform targeted interventions. For
a given task, it systematically perturbs context variables
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TABLE 19. A comparison of benchmarks for robotics.

Benchmark Primary Focus  # of Tasks  Data Provided Key Evaluation Simulation Suitability for Causal
Metric(s) Environment  Evaluation

CALVIN  Long-horizon, 34 ~24  hours of Long-Horizon PyBullet Low (as is); High (with
language- unstructured, Multi-Task modification). The
conditioned, teleoperated "play"  Language current setup rewards
compositional data; language  Control (LH- correlational learning.
tasks. annotations for MTLC) success A "Causal-CALVIN"
~1% of data. rate. variant with perturbed

physics/mechanisms
would be required to test

causal understanding.
RLBench  Few-shot,meta- 100 Infinite supply  Few-shot task  CoppeliaSim Low (as is); High (with
, and multi-task of motion-  success rate. (V-REP) modification). The diver-
learning; planned expert sity of tasks is high, but
broad skill demonstrations for the physics within each
acquisition. every task; multi- task is fixed. An "Interven-
modal observations tional RLBench" with vari-
(RGB-D, ations in physical proper-
proprioception). ties (mass, friction, etc.)

would be needed.

RoboTube Learning from ~50 5,000 multi-view  Policy  success Custom (RT- Moderate. The paired
human  video RGB-D videos of rate in RT-sim sim) real/sim setup is ideal
demonstrations; human demos; a  after training on for studying the transfer
human-to-robot "simulated twin" human  videos; of causal models. The
transfer. (RT-sim) with  sim-to-real diversity of object types
photo-realistic transfer success. (deformable, granular)
assets. provides a rich testbed for

models of complex causal
interactions.

(e.g., object positions, sizes, masses) and observes
whether the intervention affects the task outcome. This
process allows it to identify the minimal subset of
context variables that are causally relevant for success.
It then learns a ‘“‘compressed” skill or option that is
conditioned only on this small set of causal variables,
ignoring all spurious features. This results in policies
that are dramatically more sample-efficient and exhibit
superior sim-to-real transfer, as they are not distracted
by irrelevant, correlational features of the training
environment [212].

Building on this, the Causal Robot Discovery (CRD)
framework proposes a continual, online approach to
causal learning [213]. The robot begins by building an
initial causal model from passive observation. It then
analyzes this model to identify the most uncertain
or unreliable links (e.g., those with high p-values
from conditional independence tests). Based on this
uncertainty, the robot plans and executes its next set
of interventions specifically to gather data that will
maximally resolve this uncertainty [213]. This creates an
efficient, self-improving feedback loop where the robot
actively seeks the most informative data to refine its
causal understanding of the world, making it particularly
well-suited for resource-constrained robotics applica-
tions [213].

2) CAUSAL REPRESENTATION LEARNING (CRL)

The effectiveness of any causal discovery method depends on
the variables over which it operates. Causal Representation

VOLUME 13, 2025

Learning (CRL) is an emerging field that aims to bridge the
gap between low-level sensory data (like pixels) and high-
level causal variables [214]. The goal of CRL is to learn
a mapping from high-dimensional observations to a low-
dimensional latent space where the axes of the representation
correspond to the independent causal mechanisms of the
world [207]. For example, an ideal causal representation
of a scene would disentangle factors like object identity,
pose, lighting, and background into separate, independently
controllable latent variables. Such a representation is inher-
ently more compositional and generalizable, as the model
can reason about and manipulate these factors independently,
a key requirement for advanced robotics and embodied
Al [214].

The motivation for incorporating causality into robotics
must be driven by tangible, pragmatic benefits that improve
manipulation performance. It is not merely a pursuit of
philosophical purity or interpretability. The evidence from
recent work clearly demonstrates that causal reasoning is
a practical tool for building more efficient, robust, and
intelligent robots.

The most direct evidence comes from the SCALE frame-
work, which links causal discovery directly to improved
policy learning [212]. By using interventions in a simulator
to identify the true causal drivers of task success, SCALE
learns a compressed policy that is conditioned only on
relevant variables. This policy is not only more sample-
efficient to train but also more robust to spurious correlations
in the environment. When transferred to the real world,
this causally-informed policy succeeds where a standard,
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TABLE 20. Comparison of causal discovery methods in robotics.

Method Core Principle Data Requirement Key Application/Benefit Citation

V-CDN End-to-end discovery of latent Observational (passive videos Enables learning of predictive dy- 9
causal graphs from video via key-  from diverse, "unknown"  namics models that can perform
point extraction and graph infer-  interventional settings). counterfactual reasoning and ex-
ence. trapolate to unseen system config-

urations.

SCALE Active interventional discovery of ~ Interventional (requires a simula-  Improves sample efficiency and 11
causally relevant features for a  toror "causal reasoning engine" to  sim-to-real transfer by learning
task to learn a compressed, robust  perform targeted interventions). policies that are robust to spurious
skill. correlations.

CRD Continual, online refinement of a ~ Hybrid (Observational + Interven-  Enables efficient causal discovery 43
causal model by using model un-  tional). The robot actively collects  on resource-constrained robots by
certainty to guide the next set of interventional data to improve its  creating a self-improving, active
active interventions. model. learning loop.

F-PCMCI  Anefficient, filtered version of the ~ Observational (time-series data). Designed for fast and accurate 45
PCMCI algorithm for causal dis- causal analysis in real-time
covery from time-series data. robotics  applications, such

as modeling human-robot
interaction.

correlational policy fails, providing a clear demonstration
of how causal feature selection enhances generalization and
sim-to-real transfer.

Furthermore, causal knowledge can make the entire
learning process more efficient. A robot that understands the
causal structure of its environment can guide its exploration
more intelligently. Instead of exploring randomly, an RL
agent can use its causal model to prioritize actions that are
most likely to influence task-relevant variables, dramatically
reducing the number of samples needed to learn an effective
policy [210]. The CRD framework operationalizes this by
using the uncertainty in its current causal model to actively
plan the most informative interventions, creating a highly
efficient data collection loop [213].

Finally, a validated causal model unlocks the ability to
perform counterfactual reasoning, which is the foundation
of robust, deliberative planning. The model can simulate the
outcomes of actions it has never taken in situations it has
never seen, allowing it to plan for novel circumstances and
recover from failures [208]. For instance, it can be used to
analyze why a task failed by tracing back the chain of causal
events that led to the undesirable outcome, enabling more
sophisticated error diagnosis and correction [212].

Table 20 provides a taxonomy of key causal discovery
methods relevant to robotics, organizing the literature into a
coherent framework and highlighting their practical applica-
tions.

VIIl. CONCLUSION

In this survey, we reviewed the emerging paradigm of robot
learning for manipulation skills by leveraging abundantly
available uncurated videos. Learning from video data allows
for better generalization, reduction in dataset bias, and
cutting down the costs associated with obtaining well-curated
datasets. We began by outlining and discussing the essential
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components required for learning from video data and
some current large-scale datasets and network architectures
proposed for robot learning.

We surveyed techniques spanning representational, rein-
forcement, imitation, hybrid, and multimodal learning
approaches for learning from demonstration videos in an
end-to-end or modular manner. Analysis was provided
around representations, sample efficiency, interpretability,
and robustness for categories like pose estimation, image
translation, and vision-language approaches. The benefits
highlighted include generalization beyond controlled envi-
ronments, scalability through abundant supervision, and
avoiding biases coupled with human dataset curation. We also
discussed evaluation protocols, sim-to-real challenges, and
interactive learning as augmentations to pure video-based
learning.

In conclusion, while still a nascent research direction,
robot learning from online human videos shows immense
promise in overcoming key data challenges prevalent in
other supervised manipulation learning paradigms. If open
challenges around dynamics, long-horizon understanding,
absence of consistent and objective evaluation and bench-
marking protocols, and sim-to-real transfer are systematically
addressed, video-based learning can provide a scalable,
economical, and generalizable pathway for robot acquisition
of intricate real-world manipulation skills.
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