
The Frog-Boiling Attack:
Limitations of Anomaly Detection for Secure Network

Coordinate Systems
Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, Yongdae Kim

{dchantin, feldman, hopper, kyd}@cs.umn.edu
University of Minnesota

Abstract. A network coordinate system assigns Euclidean “virtual” coordinates
to every node in a network to allow easy estimation of networklatency between
pairs of nodes that have never contacted each other. These systems have been
implemented in a variety of applications, most notably the popular Azureus/Vuze
BitTorrent client. Zage and Nita-Rotaru (CCS 2007) and independently, Kaafar
et al. (SIGCOMM 2007), demonstrated that several widely-cited network coor-
dinate systems are prone to simple attacks, and proposed mechanisms to defeat
these attacks using outlier detection to filter out adversarial inputs. We propose
a new attack, Frog-Boiling, that defeats anomaly-detection based defenses in the
context of network coordinate systems, and demonstrate empirically that Frog-
Boiling is more disruptive than the previously known attacks. Our results suggest
that a new approach is needed to solve this problem: outlier detection alone can-
not be used to secure network coordinate systems.
Key words: Vivaldi, Anomaly Detection, Network Coordinate Systems

1 Introduction
Network coordinate systems assign virtual coordinates to every node in a network.
These coordinates allow efficient estimation of the latencybetween any pair of nodes
in the network: instead of directly measuring theO(n2) pairwise latencies, each of the
n nodes computes its coordinates based on the round-trip timeto a few other nodes
and their coordinates, greatly reducing the communicationcosts. Several possible uses
of network coordinate systems include choosing peers to download from in a fileshar-
ing network [1], choosing peers for routing in a DHT [2], or finding the closest node
in a content-distribution network. A popular BitTorrent client, Azureus (now called
Vuze [3]), is currently using a network coordinate system toprioritize lookups based on
network distance and to find closer nodes [4].

There have been several network coordinate systems proposed in the literature;
these schemes can be categorized into centralized or “landmark”-based systems [1,5,6]
that depend on a small set of “trusted” nodes, and decentralized systems [7,8]. A widely-
implemented and studied example of decentralized coordinate systems is Vivaldi [7],
which has been shown to produce accurate estimations and converge quickly under var-
ious network conditions. Although it is decentralized, Vivaldi can be easily disrupted
by spurious or malicious nodes, rendering the network coordinate system useless and
impractical since the nodes never reach a stable coordinate. Zage and Nita-Rotaru [9]
proposed a mechanism, based on real-time statistical analysis of nodes’ coordinates, to
detect and discard adversarial inputs. A similar mechanismwas proposed and evaluated
by Kaafaret al. [10]. Both methods rely on outlier detection using statistical models –
respectively, the Mahalanobis distance and Kalman filters –of coordinate evolution.

In this paper, we demonstrate the inherent challenge in designing a secure network
coordinate system using outlier detection. We propose theFrog-Boiling attack, where

2 E. Chan-Tin, D. Feldman, N. Hopper, Y. Kim

an adversary disrupts the network while consistently operating within the threshold
of outlier detection. This is analogous to the popular account that a frog put in hot
water will quickly jump out but a frog placed in cold water that is gradually brought
to a boil will not notice the change and boil to death. The adversary sends “small-
step” fake updates (fake RTTs or self-reported error or coordinate)1 to nodes in the
network. The “step” is small enough that it does not trigger the anomaly detection but
the nodes attacked are still affected. Thus, the coordinates of the nodes in the attacked
network quickly become very different from the coordinatesof the same nodes in the
original network. The effectiveness of the attack can also be significantly increased
when conducted in conjunction with aSybilattack.

We implement, and empirically evaluate, three variants of the Frog-Boiling attack
to demonstrate its effectiveness against outlier-detection based defenses. All three at-
tacks rely on a simple concept: lying can be harmful but telling consistent, believable
lies is even more harmful. Our evaluation on a PlanetLab deployment of Vivaldi shows
that even the basic frog-boiling attack ismore disruptiveagainst the security mecha-
nism proposed in [9] than the attacks they defend against. Inparticular, with only 5%
of attackers in the network, Frog-boiling causes a median relative error of0.28 after
two hours and0.57 after 14. The same network with no attackers has a median relative
error of0.11, and under Zage and Nita-Rotaru’s “random” attack, the insecure coordi-
nate scheme has a maximum median relative error of0.22, even when the fraction of
attackers is above 10%. Thus the outlier detection mechanism is completely ineffective
against frog-boiling. We note that while the step size of theattack is small – nodes are
pushed “little by little” – the result of the attack is neither slow nor small, resulting in
similar errors just as quickly as previously known attacks but causing greater damage
over time. See Section 5.3 for more details.

While similar attacks on outlier detection mechanisms appear in the literature (in-
cluding [12, 13]), to our knowledge we are the first to demonstrate the effectiveness of
frog-boiling in the context of network coordinate systems.Furthermore, we demonstrate
that the attacks aremore disruptivethan previous work and are completely unmitigated
by the existing approaches to securing network coordinate systems. These results sug-
gest that new approaches and/or stronger assumptions are needed to construct secure
network coordinate systems.

The remainder of the paper is organized as follows. We give a brief background on
network coordinate systems, existing attacks, and the outlier detection mechanisms in
Section 2. A detailed description of the attacks outlined above is given in Section 3.
The evaluations of our experiments on a wide area network areshown in Section 4 and
Section 5. Finally, we conclude in Section 6.

2 Background
2.1 Network Coordinate Systems

The first network coordinate systems developed were centralized – trusted infrastructure
nodes compute coordinates for all other nodes. Centralizedsystems typically require a

1 This is possible since updates are usually done via the application level, and an adversary can
easily delay or hasten [11] replies

The Frog-Boiling Attack 3

significant fraction of all network nodes to act as trusted servers, which is not possi-
ble for large networks. Centralized network coordinate systems include IDMaps [6],
GNP [1] and NPS [5].

To improve the ease of deployment of network coordinate systems, decentralized
network coordinate systems were introduced. A decentralized network coordinate sys-
tem has no infrastructure nodes. Instead, normal nodes pickpeers out of the set of all
nodes, and compute their own coordinates with respect to those peers only. Finding
potential peers is delegated to the underlying network. Decentralized network coordi-
nate systems are attractive for P2P applications, since they can be deployed alongside
the client software. Moreover, decentralized network coordinate systems are scalable as
there are no centralized servers which could become overloaded.
Vivaldi Vivaldi [7] is a decentralized network coordinate system. It is based on a spring
model. Its behavior is analogous to a physical model made of springs and balls, in which
each ball represents a network node and the spring connecting any two balls is longer
when the latency between those nodes is larger. Over time, such a model reaches a stable
equilibrium. A Vivaldi node begins by selecting an arbitrary set of peers, and sets its
initial coordinate to the origin. It then begins an iterative algorithm that pulls it closer
to peers with lower latencies, and pushes it away from peers with higher latencies.
After many iterations, the coordinate system reaches an equilibrium, and subsequent
changes are due only to the changing latency between nodes. Each node will pick64
other nodes in its reference set –32 nodes are “close” and32 nodes are “far”. On
each iteration, a Vivaldi node sends a probe packet (which could be piggybacked on
top of application-level messages) to each of its peers. It receives a response to each
probe packet containing the peer’s current coordinate and self-reported error estimate
(can also be piggybacked on top of application-level messages), and learns its latency
to that peer from the RTT of the transaction. It then computesa new position that is
closer to the peer if the estimated latency is too large, and farther from the peer if the
estimated latency is too small. Vivaldi’s coordinate system is n-dimensional. It was
shown in [7] that 2 dimensions plus height work well for most cases. Moreover, Vivaldi
boasts a low convergence time, a low reported error, and an accurate mapping of the
virtual coordinate network. Vivaldi also deals well withchurn– the constant change in
membership of a P2P network due to its public nature – becauseof its low convergence
time. However, Vivaldi was not designed for an adversarial environment and it is simple
for an attacker to disrupt the whole network.
Pyxida Pyxida [14] implements a virtual coordinate network. It is being used in both
academia and commercially – to track the coordinates of all the PlanetLab [15] nodes;
in the Azureus [3] BitTorrent client; and to study selfish neighbor selection in P2P
networks [16]. It is designed to work on a P2P network and implements the Vivaldi al-
gorithm. Pyxida coordinates use4 dimensions plus height. Moreover, it is open-source,
enabling easy modification to implement the countermeasures and attacks. We used
Pyxida in our experiments since it implements the Vivaldi algorithm, provides a sta-
ble network coordinate system, and has been used in a large-scale deployment [17]. A
detailed description of Pyxida is given in [18].

2.2 Existing Attacks
Several attacks have been proposed [9,10,19]. They are theDisorder attack, Repulsion
attack, Colluding Isolation attack, Inflation/Deflation attack, and theOscillation attack.

4 E. Chan-Tin, D. Feldman, N. Hopper, Y. Kim

The Repulsion and Colluding Isolation attacker sends the same coordinates each time in
an attempt to move the victim nodes to some coordinate space.The other attacks consist
of the attacker reporting random coordinates and a low error. The reader is referred to
those papers for a more detailed description of the attacks.

2.3 Countermeasures

Several mechanisms, based on outlier detection, have recently been proposed to secure
network coordinate systems.
Kalman Filter. Kaafaret al. [10] propose to implement a Kalman filter [20] to detect
outlier hosts in the network, that is, hosts that are lying orbehaving strangely. The
Kalman filter works by comparing the previous trajectory of anode’s coordinates with
its coordinates after an update. If the distance between theexpected coordinates and the
update is larger than the threshold for the Kalman filter, then the update is rejected. The
authors estimate that in order to resist the disorder attack, about10% of the network
must be trusted “surveyor” nodes.
Mahalanobis Distance. Zageet al. [9] proposed a countermeasure that uses two statis-
tical filters to ignore peers that report unusually large or rapidly changing coordinates.
The first filter is called thespatial filter, while the second is called thetemporal filter.
Each node applies both filters to incoming data from its peers, and discards data that
do not pass both filters. The Mahalanobis outlier detection function used by the spatial
filter determines if the new spatial vector falls inside an ellipsoid defined by previously-
seen vectors. The temporal filter looks at the change in the last iteration. Since the data
set is much larger, a constant-time and constant-space but slightly less accurate variant
of the Mahalanobis function is used for this filter. Since thecost of a false positive is
small, nodes can afford to set their thresholds very low. However, if the thresholds are
too low, nodes will only accept data points that fit into a small range, leading to in-
accurate coordinates. To our knowledge, the correct choiceof thresholds to maximize
security vs correctness has not been studied. When a peer’s data fails either the spatial
or temporal filter, there are two consequences. First, that peer’s data is not used to up-
date the node’s current coordinate. Second, that peer’s data is not used as history for
the filters in the next iteration. However, there is no permanent blacklist of nodes which
failed the filters. For a more detailed description, see [9].

In this paper, we attack Pyxida with Mahalanobis distance-based outlier detection.
However, because the Kalman filter approach also features a threshold region in which
updates will be accepted (and incorporated into the filter) we do not expect the Kalman
filter to offer any significant defense against frog-boiling.

3 Proposed Attacks
Recall that the ellipsoid used to determine whether a new data point falls within accept-
able bounds has axes with lengths that are multiples of the variances of the variables
used in each filter. New data points are accepted if they fall inside this ellipsoid, and re-
jected otherwise. This mechanism correctly identifies a small number of spurious nodes
that return random coordinates with low error. Since correctly operating nodes are un-
likely to change coordinates much faster than average whilestill reporting low error,
nodes that do so must be spurious.

However, an intelligent adversary can send “random” data points that still fall in-
side the Mahalanobis ellipsoid. Thus, the data points will be accepted although they are

The Frog-Boiling Attack 5

“wrong”. We call this approach theFrog-Boiling attack. If the adversary lies too much,
its peers won’t accept its updates. If it lies too little, theattack won’t succeed in disrupt-
ing the network. The Frog-Boiling attack can be used to disrupt the whole network by
continuously lying to all the nodes.

As a simple example, assume there are only two nodesA andB in the network
and they have converged to stable coordinates. An attacker nodeC is introduced and
obtains its coordinates from bothA andB. However, each timeC receives a request
(say fromA), it replies withCoordC = CoordC + δ, whereδ is a small offset. For
example, if its coordinates in 2-dimensions (Pyxida uses 4-dimensions with height) are
(120, 100), the reported coordinate will be(120.5, 100.5). Since the coordinate reported
is not outside of the Mahalanobis thresholds,A will accept the coordinate and update
its own coordinate accordingly. Then wheneverB queriesA, the response will be a
coordinate that is slightly higher than what the “real” coordinate should have been.
Thus,B’s coordinate changes slightly as well. This process continues with the attacker
continuously lying in small increments about its own coordinate. This whole process
might just shift the coordinates, but not affect the estimated distance between any two
nodes. Thus a targeted attack can be performed and as we show in Section 5, our attack
effectively renders the network coordinate ineffective.

The targeted frog-boiling attack works as follows. The attacker attempts to move
some victim nodes (a fraction of the whole network) to some arbitrary network coor-
dinates. The targeted location in this case is far from the rest of the network. Although
those nodes can still communicate with the rest of the network, they will not be able to
calculate a correct coordinate for themselves and will report a “false” coordinate and
error to the rest of the network. The Mahalanobis distance will flag those nodes as out-
liers and will not accept their updates. This effectively isolates the victim nodes from
the rest of the network.

One way of performing this attack is for the attacker to consistently report its co-
ordinates to the victim nodes so that the latter end up to coordinate spaceA. Note that
the attacker will not be able to pull the victim nodes all the way toA, but the victims
will be closer toA than the rest of the network. This is because, although the rest of the
network might not accept updates from the victim nodes, the latter will still accept up-
dates from the rest of the network. Thus, the victims are pushed toA by the attacker but
also pulled back to the rest of the network. The success of theattack is for the attacker
nodes to exert a greater force on the victim nodes than the rest of the network.

In this paper we evaluate three variants of this attack against Zage and Nita-Rotaru’s
secure network coordinate system. All three attacks rely onthe same concept of consis-
tently and progressively lying:

– TheBasic-Targeted attack is as described above.
– TheNetwork-Partition attack is an extension of the previous attack, where the

whole network is partitioned into two subnetworks or clusters.
– TheClosest-Node attacker tries to become the closest node (in terms of coordinate

space) to the victim nodes. Becoming the closest node might not be important by
itself. However, if the network coordinate system is used with an application such
as in Azureus, then the closest node could be used to initiatefile transfer. If the
attacker becomes the closest node to a victim node, it will then be the first node that
the victim contacts for a file. This can have various implications such as preventing

6 E. Chan-Tin, D. Feldman, N. Hopper, Y. Kim

any node in a file-sharing network from being able to downloada file. This attack is
performed in a similar way to the targeted attack. Instead ofpulling the victim node
to a certain coordinate space, the attacker pushes itself close to the victim node. One
way of doing this is for the attacker (after learning the victim’s coordinate) to report
its network coordinates as being very close to that of the victim’s.

4 Experimental Setup
To evaluate the impact of our attacks on a secure network coordinate system, we de-
ployed a standalone Pyxida service (see Section 2) on PlanetLab [15]. Since the original
Pyxida code implements the basic Vivaldi coordinate system, the Mahalanobis distance
outlier detection mechanism proposed in [9] was added to thePyxida code using a
third-party library [21].

We made some small modifications to Pyxida before deploying it. The neighbor
list was modified to contain a maximum of32 nodes (due to an estimated PlanetLab
network size of400). We used50 nodes as the common “bootstrap” nodes, that is, all
the Pyxida nodes contact those nodes when they first start. Wewait until the network
stabilizes before introducing any adversaries in the network.

The metric we used is the median relative error (henceforth just called error). It is
calculated as|RTTestimated−RTTactual|

RTTactual

, whereRTTactual is the actual RTT between
two nodes andRTTestimated is the RTT obtained by taking the difference in the co-
ordinates of the two nodes. The lower this number is, the moreaccurate the network
coordinate system is (each node believes it has the right coordinate). This is the same
metric used in various other papers [9,17,18].

We use both a spatial and temporal threshold of5 for our experiments. The network
starts to stabilize after only 2 hours, indicating a low convergence time. The median rel-
ative error was0.1. The attackers join the network at time 2 hours. The experiments for
determining the best thresholds, as well as the other metrics used (such as relative rank
loss [22]), will be described in the full version of this paper. We note that most of the
experiments were also performed using a simulated network to verify implementation
correctness. The results of these simulations are consistent with experimental results
and are thus omitted due to space constraints.

5 Attack Evaluations
5.1 Previous Attacks
To establish a baseline for comparison with the effectiveness of our attacks, we imple-
mented the previously proposed “coordinate oscillation” attack [9] (in which attacker
nodes report completely random coordinates with low relative error) and measure the
performance of the attack against our Pyxida deployment (without the Mahalanobis
distance filter). The progress over time of the median relative error with 11% attacker
nodes is shown below. Time (mins) 100 250 500 750 1000

Relative Error0.23 0.21 0.23 0.22 0.2
5.2 Basic-Targeted Attack
The Basic-Targeted attacker targets a victim node and attempts to change the victim’s
coordinate in small steps. We attempt to change the coordinate of the victim nodes to
beLocT = (2000, 2000, 2000, 2000) with height2000. Initially, for each victim node
(say coordinateC), the attacker node will report its coordinate to beC′ = C + δ. For

The Frog-Boiling Attack 7

each subsequent time that victim node contacts our attackernode, the latter reports its
coordinate asC′′ = C′ + δ, until C′′ = LocT . Thus, the victim’s coordinate is moved
in small steps to the target coordinate.

Recall from Section 2 that a Pyxida node only updates its coordinate when it has
sent a “ping” request. Thus, the victim nodes have to contactthe attacker nodes for the
attack to work. With10% of attackers, the victim will contact one attacker node10%
of the time. Once an attacker node becomes a neighbor of the victim, it will stay in
the neighbor’s list for at least the next32 iterations, which is long enough for another
attacker to be contacted and added to the list. The probability of an attacker node being
part of the neighbor list after32 iterations is1 − 0.932 = 96.5%. Thus, there is a very
high probability that a victim node will have at least one attacker node in its neighbor
list. Recall that the neighbor list is used every10 seconds in Pyxida to calculate the
current force. Since the attacker is updating its coordinate to be closer to the target
coordinate at each time step, the victim will thus go closer to the target coordinate
progressively. The Mahalanobis distance does not work in this case because the attacker
is within the thresholds (sinceδ is small). The attacker only attacks the victim nodes and
does not respond to other nodes in the network. Since there isno gossiping in Pyxida,
this does not affect the attack.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

M
ed

ia
n

R
el

at
iv

e
E

rr
or

% of Attackers

250
500

1000
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Time (hours)

1
2
5

10

(a) (b)

Fig. 1. The average median relative error for (a) varying % of attackers at different timestamps,
(b) the targeted nodes with11% of attackers over time and with different values ofδ

Figure 1(a) shows the error with varying percentage of attackers. (We note that 20%
of attacker nodes may seem high, but many of the applicationsthat implement network
coordinate systems are vulnerable to Sybil attacks that make it trivial to control a large
fraction of the nodes) The different lines show the error at different times (250 minutes,
500 minutes, and 1000 minutes). Adding more adversaries significantly increases the
error (by more than100% with only 11% of attackers). The error is increased from
0.12 with no attackers to0.25 with 11% of attackers, an increase of108%. After 1000
minutes (a little over 16 hours), it can be seen that the network coordinate is unusable
even with only 5% of the network being malicious – the error isgreater than 0.5.

The frog-boiling attack on the secure network coordinate system is as effective as
a random attack on the original network coordinate system. At time 500 minutes, the
error for the random attack is0.23 while the error for the frog-boiling attack is0.25 with
11% of attackers. This means that the Mahalanobis distance does not provide any extra
protection to a network coordinate system. This reinforcesour belief that an outlier
detection system is not suitable to secure a network coordinate system.

8 E. Chan-Tin, D. Feldman, N. Hopper, Y. Kim

5.3 Aggressive Frog-Boiling
Our attack works by moving the victims in small steps to some coordinate. In the previ-
ous section, the step sizeδ was2ms. In this section, we varied the value ofδ to test the
effect of a more aggressive attack, which will produce an impact on the network earlier
– in other terms, we show how quickly our attack can have an impact on the network.
Figure 1(b) shows the error with11% of attackers in the network. The different lines
show the differentδ values used – 1, 2, 5, and 10. Withδ equal to 1 and 2, the error stays
the same until time6 hours, so it take4 hours for the attack to start having an effect.
On the other hand, withδ equal to 5 or 10, the relative error starts to increase at time4
hours – after only2 hours, the victim’s network coordinates start to be disrupted. Thus,
out attack is fast and efficient.

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
to

 c
en

tr
oi

d
dc

 (
m

se
c)

Time (minutes)

Network2
Network1

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 5 10 15 20 25
In

te
rc

lu
st

er
 /

In
tr

ac
lu

st
er

 d
is

ta
nc

e

Time (hours)

6%
13%
23%

(a) (b)
Fig. 2. (a) The coordinate distance to the centroid and (b) the intercluster / intracluster ratio for
the Network-Partition attack

5.4 Network-Partition Attack
The Network-Partition attack is similar to the Basic-Targeted attack. Instead of just
moving the victim nodes (Network1) to some far-away coordinate, the rest of the
network (Network2) is also moved to some other location. This effectively partitions
the network into two subnetworks. The targeted coordinate for Network1 was set to
P1 = (1000, 1000, 1000, 1000) with height1000 and the targeted coordinate for Net-
work2 was set toP2 = (−1000,−1000,−1000,−1000) with height−1000.

In our experiment,6% of the nodes were adversaries,37% of the network was as-
signed to Network1 and57% of the network was assigned to Network2. Figure 2(a)
shows the distance to the origin of the network for Network1 and Network2. At the
beginning, the two clusters are close together. At time500 minutes, which is how long
it takes for the attack to have an effect, the two networks start to diverge. Network1 is
pushed towardP1 while Network2 is pushed towardP2. Since the two clusters con-
tinue to exert some pull on each other, the intended coordinates are not reached, but the
network is still effectively partitioned.

Figure 2(b) shows the ratio of the intercluster distance to the intracluster distance.
The intercluster distance is the average of the distance from Network1 to the centroid
of Network2 and the distance from Network2 to the centroid ofNetwork1. The intra-
cluster distance is the average of all the nodes in a cluster to the centroid of that cluster.
The ratio shows how far apart the two clusters are moving fromeach other. The figure
shows that over time, the two networks are getting pulled further apart from each other.
The different lines show different fractions of attackers.This shows that our attack ef-
fectively partitions the whole network into two smaller networks far apart from each

The Frog-Boiling Attack 9

other. We note that this attack could easily be extended to support partitioning into an
arbitrary (constant) number of clusters with arbitrary membership ratios.

5.5 Closest-Node Attack

An adversary tries to become the closest node (in terms of coordinate space) to a victim
in the Closest-Node attack. The attacker node queries the victim nodes constantly to
obtain their coordinates. When a victim node queries the attacker node, it will reply
back with that victim node’s coordinate+δ. The attacker node does not reply to other
nodes in the network. We took a snapshot at500 minutes and determine how many
times one of the attacker nodes was reported as being the closest neighbor of a victim
node (this reporting is done every10 minutes). With only11% of attackers, we find that
an attacker is able to become the closest neighbor to a victimnode41% of the time.

6 Conclusion
A stable, decentralized network coordinate system could potentially provide a beneficial
service for many Internet applications. However, existingsystems provide no protection
against malicious participants: even a single adversary can cause the entire coordinate
system to fail. The apparent solution to such a dilemma is to add an anomaly detection
mechanism to the coordinate system. Previous studies have shown that such a mecha-
nism can prevent adversaries from disrupting the network. However, protection against
more complicated adversaries is fraught with difficulty.

Consider a node in a network coordinate system that has some outlier detection
mechanism. In order for the node to determine its coordinates, it must learn about the
coordinates of its peers – it must accept some updates. The range of updates it accepts
must be based on recent history, since network topologies and conditions vary widely.
However, under these two assumptions an adversary can slowly expand the range of data
accepted by the node by influencing the node’s recent history. We call this attack the
Frog-Boilingattack. In this paper we have introduced three variants of the frog-boiling
attack and empirically demonstrated that the attack effectively disrupts the Vivaldi net-
work coordinate system to a greater extent than previous attacks, and that the attack
is completely unmitigated by Mahalanobis distance-based outlier detection. There is
no reason to believe that Frog-Boiling would not be equally effective against Kalman
filter-based outlier detection; we leave the evaluation of this claim for future work.

The task of securing a distributed network coordinate system against adversaries
seems very challenging. The problem is that the current distributed network coordinate
system mechanisms (secure or not) rely only on a node’s localview of the network.
Because of this, it is a challenge for a node to know whether a reported coordinate and
RTT is correct or faked. Thus, a secure network coordinate system will need to provide
some mechanism to verify a node’s reported coordinates and/or RTTs. The success of
the Frog-Boiling attack demonstrates that outlier detection is not a secure mechanism
to provide this service. Recent work based on reputation or trust mechanisms [23, 24]
may provide an alternative approach, but the difficulty of constructing secure reputation
systems suggests that these schemes will also require careful evaluation.

Acknowledgments. We thank Jonathan Ledlie and Peter Pietzuch for their help
with Pyxida, and Eugene Vasserman for pointing out the analogy to “boiling a frog.”
This work was supported by the NSF under grant CNS-0716025. No frogs were harmed
in the writing of this paper.

10 E. Chan-Tin, D. Feldman, N. Hopper, Y. Kim

References

1. Ng, T.S.E., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based Ap-
proaches. Proceedings of IEEE (INFOCOM) (2002)

2. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F.,Morris, R.: Designing a DHT for low
latency and high throughput. In: Proceedings of the 1st USENIX Symposium on Networked
Systems Design and Implementation (NSDI). (2004)

3. Azureus:http://azureus.sourceforge.net
4. Vuze Forums:http://forum.vuze.com/thread.jspa?threadID=80764
5. Ng, T.S.E., Zhang, H.: A network positioning system for the internet. Proceedings of the

USENIX annual technical conference (2004)
6. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt,Y., Zhang, L.: IDMaps: A Global

Internet Host Distance Estimation Service. IEEE/ACM Trans. Netw.9(5) (2001) 525–540
7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A Decentralized Network Coordinate

System. In: Proceedings of ACM SIGCOMM. (2004)
8. Costa, M., Castro, M., Rowstron, A., Key, P.: PIC: Practical Internet Coordinates for Distance

Estimation. Proceedings of the IEEE International Conference on Distributed Computing
Systems (ICDCS) (2004)

9. Zage, D.J., Nita-Rotaru, C.: On the accuracy of decentralized virtual coordinate systems
in adversarial networks. In: Proceedings of the 14th ACM conference on Computer and
communications security (CCS). (2007)

10. Kaafar, M.A., Mathy, L., Barakat, C., Salamatian, K., Turletti, T., Dabbous, W.: Securing
Internet Coordinate Embedding Systems. Proceedings of ACMSIGCOMM (2007)

11. Su, A.J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting Behind Akamai
(Travelocity-Based Detouring). Proceedings of ACM SIGCOMM (2006)

12. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineering,
Vol. SE-13, No. 2 (1987)

13. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar,J.D.: Can Machine Learning Be
Secure? In: Proceedings of the ACM Symposium on InformAtion, Computer and Commu-
nications Security (ASIACCS). (2006)

14. Pyxida:http://pyxida.sourceforge.net
15. PlanetLab:http://planet-lab.org
16. Selfish Neighbor Selection:http://csr.bu.edu/sns
17. Ledlie, J., Pietzuch, P., Seltzer, M.: Network coordinates in the wild. Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2007)
18. Ledlie, J., Pietzuch, P., Seltzer, M.: Stable and accurate network coordinates. Proceedings

of the IEEE International Conference on Distributed Computing Systems (ICDCS) (2006)
19. Kaafar, M.A., Mathy, L., Turletti, T., Dabbous, W.: Realattacks on virtual networks: Vivaldi

out of tune. Proceedings of the SIGCOMM workshop on Large-scale Attack Defense (2006)
20. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of

the ASME–Journal of Basic Engineering82(Series D) (1960) 35–45
21. CommonSense: http://www.kimvdlinde.com/professional/

programming/statistics/commonSense/body.html
22. Lua, E.K., Griffin, T., Pias, M., Zheng, H., Crowcroft, J.: On the Accuracy of Embeddings

for Internet Coordinate Systems. In: Proceedings of ACM SIGCOMM-Usenix Internet Mea-
surement Conference (IMC). (2005)

23. Sherr, M., Blaze, M., Loo, B.T.: Veracity: Practical Secure Network Coordinates via Vote-
based Agreements. In: USENIX Annual Technical Conference.(2009)

24. Zhao, X., Lua, E.K., Chen, Y., Song, X., Deng, B., Li, X.: Sniper: Social-link Defense
for Network Coordinate Systems. IEEE Conference on Computer Communications (INFO-
COM) (poster) (2009)

