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Abstract—This paper investigates the effect of permutations on 

blocks of a prime reciprocal sequence on its randomness. A 

relationship between the number of permutations used and the 

improvement of performance is presented. This can be used as a 

method for increasing the cryptographic strength of 

pseudorandom sequences. 

 

Keywords- quantum cryptography; autocorrelation 

functions; d-sequences; randomness 

I. INTRODUCTION  

In the BB84 protocol of quantum cryptography [1], Alice 

chooses a random sequence of base states which are either 

rectilinear or diagonal. The different polarization base states 

used in quantum cryptography are shown in the following 

figure, Fig. 1.These are supposed to be randomly chosen, but 

no attention has been given to how these are chosen. If the 

cryptographic strength of choice of the sequence is weak, it 

could become a source of weakness within the system which 

can be exploited by the eavesdropper. Likewise in the three -

stage protocol of quantum cryptography [2]-[4], the rotations 

chosen by Alice and Bob which are random should be 

cryptographically strong. 

 

Pseudorandom sequences that are algorithmically produced 

have limited cryptographic applications because the 

eavesdropper can readily generate them. The complexity of 

the generation process and the lack of correlation amongst the 

bits (or digits) of the sequence are important in determining 

the usefulness of a pseudorandom sequence. A quantum 

mechanical process can be used to generate a true random 

sequence but such a method is not always convenient. 

 

 

 
 

Figure 1. Base States of Polarization 

Classical random sequences also find use in quantum 

cryptography applications since the random base choices or 

rotations there, either in the BB84 protocol [1] or the three-

stage protocol [2]-[4], must be generated by an algorithmic 

process.   

 

To develop a method of improving the quality of 

pseudorandom sequences, the question of a metric for the 

degree of randomness must be addressed. There are several 

ways the randomness of a binary sequence is defined 

statistically [5] and from a computational complexity point of 

view [6]. The problem of randomness is complicated by 

entanglement in quantum systems [7], [8] and it shall not be 

considered here. One popular method of defining randomness 

of an n-bit long sequence a(i) is given by the following 

formula 

 
 

where c(k) is the autocorrelation function  

, where the sequence is represented 

in terms of +1s and -1s. This is intuitively satisfactory since 

for a completely random binary sequence this randomness 

measure is equal to 1 and for a constant sequence the 

randomness measure is 0. For a maximum length shift-register 

sequence of period 2
k
 [9], the randomness measure is 1-1/n. 

For good pseudorandom sequences, the randomness measure 

will be a number just less than 1. 

 

      Prime reciprocal sequences or d-sequences [10]-[14] have 

many applications and any pseudorandom sequence can be 

mapped to a suitable d-sequence. As seen in Fig. 2, the 

randomness measure gets closer to 1 as the period of the d-

sequence increases which is perfectly consistent with the 

theorem that prime reciprocal sequences are normal 

sequences. 

 

      A number x is simply normal in base r if in the decimal of 

x each of the r possible digits occur with a frequency 1/r, 

i.e.,   for all b, where the digit b occurs nb 

times in the first n places and a number x is normal in base r if 

all of the numbers  x, rx, r
2
x,…  are simply normal in all of 
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bases r, r
2
, r

3
,…  It follows that when x is expressed as a 

decimal in the scale of r, every combination b1, b2, b3, …  of 

digits occurs with the proper frequencies. Thus, the property 

that a number is normal in base r may be reiterated by saying 

that all the digits 0 - (r - 1) occur with equal probability, and 

that each digit of the sequence is independent of every other 

digit. Almost all numbers are normal in any base. 

 

     Nevertheless, from a practical point of view, given prime 

reciprocal sequences are not entirely satisfactory. To see this 

first note that the prime reciprocal sequence a(i), i = 1,2,3,… 

for  prime p (that is the sequence 1/p in base 2) can be 

generated as a(i) = 2
i
 mod p mod 2 (Reference [12]): 

 

b(0)= 1 

b(i+1) = 2b(i) mod p 

a(i)=b(i) mod 2 

 

Maximum length (with period p-1) prime reciprocal sequences 

are generated when 2 is primitive root of p.  

 

Although maximum length binary prime reciprocal 

sequences have excellent autocorrelation properties they have 

the negative peak of -1 for half the period that reflects the fact 

that the sequence after half the period is a complementary 

image of the first half. As example, the binary d-sequence for 

1/13 is 000100111011 where the last 6 bits are complements 

of the first 6 bits. This means that although the randomness 

measure of such sequences is high, it is not very useful in this 

context. 

 

We suggest performing another transformation on the given 

sequence. In contrast to an earlier preliminary study [15] 

where groups of bits were mapped to a single bit based on 

plurality of 0s or 1s to improve autocorrelation properties, here 

we consider the effect of block permutations on 

autocorrelation. A number of different random permutations 

are applied to the blocks of the candidate pseudorandom 

sequence. We will show that doing so improves the 

autocorrelation performance considerably. The specific 

questions that are answered in this paper include a relationship 

between number of different permutations used and the 

improvement of performance.  

 

 
 

Figure 2. Randomness measure of prime reciprocal sequences 

to 200 

 

II. CHOOSING BLOCKS FOR PERMUTATION  

A d-sequence can be divided into either even number of 

blocks or odd number of blocks. The performance of the 

permutation for the d-sequences does depend on whether the 

number of blocks is even or odd. For example, the d-sequence 

of the prime number 1277 can be divided into blocks in a 

variety of ways as 1276 has factors 2, 4, 11, and 29. Here we 

will consider the division of 1276 into 58 blocks of size 22 bits 

or 319 blocks of size 4 bits. 

  

In the general case, the sequence S can be represented as the 

concatenation of blocks S1S2S3S4… We represent an n-

permutation by the operator Pn = P1P2P3... so that the 

permutations P1, P2, P3,… are applied in sequence. For 

example, 3-permutation P3 will work as follows: 

P3(S) = P1(S1) P2 (S2) P3(S3) P1(S4) P2(S5) P3(S6) … 

 
III.    EXPERIMENTS 

A. Example 1 

      In the first experiment, we consider the d-sequence of 

length 1276 which is divided into 58 blocks that is S1, S2, S3… 

S58. We generated a random permutation, P of size 22. This 

permutation, P is applied on all the 58 blocks of the d-

sequence. If the position of each digit is represented with the 

help of an alphabet as follows. 

 

1  0   1  0  1  0  0   1   1  0   1  1  0   1   1   1   1  0  1   1  1  1 

a   b  c  d  e   f   g   h   i   j   k   l  m  n   o   p   q  r   s   t   u  v 

 

      P is the permutation “hajblcfedgikovusrqnpmt” and it 

transforms the given block to 1100110100111111011101. 

This random permutation “hajblcfedgikovusrqnpmt” is applied 

on each of 58 blocks of the sequence. We have conducted this 

experiment many times where the permutation P varies in 

each experiment.  

 

1) Autocorrelation graphs 

 

The average of all autocorrelation values of the experiments 

that we conducted many times is plotted in the graph shown in 

Fig.  3 

 

 
 

Figure 3.  Autocorrelation of the d-sequence with a single 

permutation applied on its 58 blocks of size 22 digits each 



      To stress the difference with odd number of blocks, we 

next consider 319 blocks of size 4 digits each of the d-

sequence of 1277. We applied a single permutation P, on all 

the 319 blocks as we did in the case of even number of blocks. 

The graph in Fig. 4 shows the autocorrelation values of the d-

sequence for odd number of blocks. As the autocorrelation 

function for half the period is less than what it was for the case 

of even number of blocks, this clearly shows that the 

performance of permutation process varies for even and odd 

number of blocks. 

 

      Next, as a continuation of the first experiment on the d-

sequence for even number of blocks, we generated two 

random permutations P1, P2 of length 22 each. The 

permutation P1 is applied on S1 and the permutation P2 is 

applied on S2 .Then the same two permutations P1 and P2 are 

applied on S3 and S4 respectively. This is repeated for all the 

58 blocks of the d-sequence. We conducted the experiment 

many times where the permutations P1 and P2 are different 

every time and plotted the average of the autocorrelation 

values in the graph shown in Fig. 5. 

 

      Next we consider four random permutations P1, P2, P3 and 

P4. We applied the permutations P1, P2, P3 and P4 on S1, S2, S3 

and S4 of the d-sequence of period 1276. Then, we applied the 

same four permutations, P1, P2, P3 and P4 on S5, S6, S7 and S8 

respectively and this process was repeated till the end of the 

58 blocks.  

 

 
 

Figure 4.  Autocorrelation of the d-sequence with a single 

permutation applied on its 319 blocks of size 4 digits each 

 

 
 

  Figure 5.  Autocorrelation of the d-sequence of 1277 with two 

different permutations on 58 blocks of size 22 digits each 

 
 

Figure 6.  Autocorrelation of the d-sequence of 1277 with four 

different permutations on its 58 blocks of size 22 digits each 

 

     We conducted the experiment many times where the 

permutations P1, P2, P3 and P4 are different every time and 

plotted the average of the autocorrelation values in the graph 

shown in Fig. 6.  

 

      Similarly we considered five, six, seven, eight, nine and 

ten different permutations on the 58 blocks of the d-sequence 

of 1277. As a final step, we generated 58 random permutations 

P1, P2…P58 on S1, S2, … S58 respectively. We conducted the 

experiment many times where the permutations are different 

every time and plotted the average of the autocorrelation 

values in the graph shown in Fig. 7. 

 

2) Off Peak autocorrelation for different number of 

permutations performed on the d-sequence of 1277 

 

      The following table, Table 1 represents the maximum 

autocorrelation values of the d-sequence of the prime number, 

1277. These are the results observed when the above 

experiments of different permutations are performed on the d-

sequence of 1277 which is divided into 58 blocks of size 22 

digits each. Table 2 represents the maximum autocorrelation 

values of the d-sequence of the prime number 1277 for odd 

number of blocks that is 319 blocks of size 4 digits each. 

 

 
 

Figure 7.  Autocorrelation of the d-sequence of 1277 with 58 

different permutations on its 58 blocks of size 22 digits each 

 

The striking difference between the two Tables if for the 

value at 1-permutation where for obvious reasons it makes for 

no improvement if the number of blocks is even. Also if the 



size of the blocks is small, the reduction in the value of the 

off-peak autocorrelation is small.  

 

Table I.  Absolute maximum of the autocorrelation values of 

the d-sequence of 1277 which is divided into 58 blocks of size 

22 digits each that is even number of blocks 

 

 

Number of 

different 

permutations 

Maximum 

auto-

correlation 

Value 

0 1.0 

1 1.0 

2 0.10 

3 0.09 

4 0.10 

5 0.10 

6 0.09 

7 0.10 

8 0.24 

9 0.10 

10 0.13 

58 0.08 

 

 

Table II.  Absolute maximum of the autocorrelation values of 

the d-sequence of 1277 which is divided into 319 blocks of 

size 4 digits each that is odd number of blocks 

 

 

Number of 

different 

permutations 

Maximum 

auto-

correlation 

Value 

0 1.0 

1 0.47 

2 0.38 

3 0.41 

4 0.24 

5 0.64 

6 0.31 

7 0.32 

8 0.37 

9 0.26 

10 0.34 

319 0.19 

 
 

Figure 8. Improvement Factor of the d-Sequence of 1277 when 

divided into 58 blocks of size 22 digits each that is even 

number of blocks 

 

 
 

Figure 9. Improvement Factor of the d-Sequence of 1277 when 

divided into 319 blocks of size 4 digits each that is odd 

number of blocks 

 

3) Improvement Factor 

 

The Improvement Factor in the off-peak autocorrelation 

function of any d-sequence may be measured by the following 

formula. 

 Improvement Factor, I = 1/maximum ( |c(k| ), k ≠ 0 

 

       We considered the improvement factor as a measure of 

randomness in our experiments. Fig. 8 and Fig. 9 show the 

improvement factor for the d-sequence of prime 1277 for 

different number of permutations. 

 

 
Figure 10.  Improvement Factor of the d-Sequence of 1787 

when divided into 94 blocks of size 19 digits each that is odd 

number of blocks 

 



 
 

Figure 11. Improvement Factor of the d-Sequence of 1787 

when divided into 47 blocks of size 38 digits each that is odd 

number of blocks 

 

B. Example 2 

 

We conducted the above experiments for a large number of 

primes that lead to maximum length d-sequences.  Fig. 10 and 

Fig. 11 show the improvement factor of the permuted d-

sequence of 1787. Fig. 10 shows the improvement factor of 

the d-sequence of 1787 where it is divided into even number 

of blocks that is 94 blocks of size 19 digits each. Fig. 11 

shows the improvement factor of the d-sequence of 1787 

where it is divided into odd number of blocks that is 47 blocks 

of size 38 binary digits each. 

 

      From all the above experiments it is found that the 

randomness of a d-sequence increases by applying 

permutations on its blocks. Similar results are obtained for a 

random sequence that is generated on a Windows PC.  The 

above graphs show that the improvement factor is quite 

impressive if the block size is not too small. Several statistical 

tests of randomness [5] were performed on the sequences and 

the results were supportive of the conclusion that the 

sequences are cryptographically strong. 

 

IV.    CONCLUSION 

 

      We show that permutations on blocks of random 

sequences improve their randomness. The improvement 

presented in the graphs is typical of the performance of d-

sequences. The specific conclusion is that two or three 

permutations on blocks that are not too small suffice to 

improve the autocorrelation function of the sequence.      

    

      Cryptographically strong random sequences can be used 

both in BB84 and the three-stage quantum cryptography 

protocols. In the BB84 protocol, the sequence of rectilinear 

and the diagonal polarizations can be chosen based on the 

random sequence. In the three-stage protocol, the angles can 

be generated using the random sequences and one way to do 

this is to use decimal before the subsequence and consider it as 

the fractional part of the 360 degrees circle. 
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