
Learning Computational Thinking from Rapid
Digital Game Creation

Praveen Kuruvada
Computer Science, College of Arts and Science

Oklahoma State University,
Stillwater, OK, USA

praveen.kuruvada@okstate.edu

Daniel A. Asamoah
Information Systems, Spears School of Business

Oklahoma State University,
Stillwater, OK, USA

daniel.asamoah@okstate.edu

Nikunj Dalal
Information Systems, Spear School of Business

Oklahoma State University,
Stillwater, OK, USA

nik.dalal@okstate.edu

Subhash Kak
Computer Science, College of Arts and Science

Oklahoma State University,
Stillwater, OK, USA

subhash.kak@okstate.edu

Abstract--Computational Thinking (CT) has been described as
a universally applicable ability such as reading and writing. In
this paper, we describe an innovative pedagogy using Rapid
Digital Game Creation (RDGC) for learning CT skills. RDGC
involves the rapid building of digital games with high-level
software that requires little or no programming knowledge.
We analyze how RDGC supports various CT concepts and how
it may be mapped to equivalent Java concepts by building the
same game using both RDGC and Java. We discuss the
potential benefits of this approach for attracting computing
majors, as a precursor to learning formal programming
languages, for learning domain knowledge, and for bridging
the digital divide. We present the implications of this work for
teachers and researchers.

Keywords--Rapid computer game creation,Computational
Thinking, pedagogy, Computing Education, Computer Science
curriculum, Information Systems curriculum

I. INTRODUCTION
Computational Thinking (CT) is an important type

of thinking, which combines key elements of analytical,
critical, and creative thinking. [8] Seminal article on CT
states that “computational thinking represents a universally
applicable attitude and skill set that everyone, not just
computer scientists, would be eager to learn and use.” CT is
concerned with conceptualizing, problem-solving and
designing systems drawing upon mathematical and
engineering thinking using concepts fundamental to
computing [8].

However, the mode and method for teaching CT
still remains a challenge even though it may be seen as a
fundamental skill for problem solving in all disciplines [4].
To this end, the use of Rapid Digital Game Creation
(RDGC) has been proposed as a pedagogical framework for
teaching CT in an innovative way [2] because video games
are attractive and captivating to all groups of people
including both adults and children of both genders. RDGC
is the process used to build computer games quickly and
easily using game creation software that requires little or no
programming knowledge. Rapid game creation enables a
creator to build a quick prototype game and to see the

effects of changes almost immediately [3]. Curricula that
have used game design in teaching computing concepts
have largely found positive effects on students [10] [11].

In this paper, we describe how RDGC supports
the learning of basic and advanced concepts in CT. This
paper is organized as follows. In the next section, we
describe RDGC and its benefits in teaching CT skills. Next,
we discuss how RDGC supports the learning of CT. Using a
rapid game development tool called Game Maker, we
demonstrate how RDGC could be used as a pedagogical
framework to teach CT. In particular, we demonstrate the
building of a Pong game and how that can be used to learn
CT concepts necessary for computer programming. We map
the RDGC implementation constructs to equivalent concepts
in the popular Java programming language. We conclude
with a discussion on the effectiveness of RDGC in learning
CT and discuss implications for future teaching and
research.

II. RAPID DIGITAL GAME CREATION
As described earlier, Rapid Computer Game

Creation refers to the process of building computer games
quickly and easily, using game creation software that
requires little or no programming knowledge. RDGC offers
an easy and more enjoyable way of achieving this task of
building computer games. In an attempt to build a video
game, users intrinsically learn basic programming concepts
without necessarily realizing that they are using those
concepts. Subsequently, when they do learn programming, it
is easier for them to understand the programming constructs
because they can be correlated with specific examples from
the user’s own game products.

There are various RDGC tools available such as
Game Maker (http://www.yoyogames.com/), Multimedia
Fusion (http://www.clickteam.com/website/usa/), Alice
(http://www.alice.org/), and Scratch
(http://scratch.mit.edu/). For example, Alice is a 3D
programming environment used for creating animations for
story telling or games [1]. Scratch is also a similar game
creation tool used for creating animations, music and art.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 31

The concepts described in this paper are platform
independent as any of the tools can be used as a means to
enhance CT. For the purpose of this paper, we have chosen
Game Maker as the platform because it is popularly
available in the public domain and also because of the
relatively short learning curve it requires [6]. Besides, Game
Maker has got several options such as Sprites (where the
user gets the options to create the characters required for the
game being designed), Objects (where the characters created
in sprites can be imported and assigned with some events),
Room (the actual window of the game) and others.

III. DESIGNING A GAME IN GAMEMAKER
In this section, we take a look at some of the key

components to consider in creating a video game using the
Game Maker software. We take a game template we
designed using Game Maker and draw parallels with the
equivalent game designed in Java and subsequently show
how it supports CT concepts. We explore how CT as needed
for proficiency in a higher level language like Java can be
taught to novices in computer programming using the easy-
to-use features of a Rapid Computer Game Creation Tool as
a precursor to learning the formal language.

Figure 1 shows a screen shot from a prototype
Pong game created using Game Maker. The Pong game was
designed as a template to illustrate the various programming
concepts. The time it takes to create the initial game is as
little as 30 minutes. An equivalent Pong game was created
using the Java programming language in an effort to
understand the correspondence between an RDGC tool and
a formal programming language.

Figure 1. Prototype Pong Game designed using GameMaker

Designing the game in Game Maker requires very
little or no programming knowledge. It has several in-built
menu options that can be selected as per the user’s
requirements. Initially we need to create or upload the
characters required for the game. This is done in the sprites
section where we have an interface where the user could
draw a character or upload an existing character.

Once the required sprites are created, we import
them to the objects. Once the objects are created, the next
step is to assign events to the objects so that they perform
actions as required by the game .The use of ‘Events’ helps
the user iterate through different ‘if-statements’ in trying to
make choices as required for the games. At this stage, the
user learns what sort of action would be performed upon
selection of a particular option. It forms a base to better
understand the basic concepts of programming such as the

use of sequence, loops, decision structures, and other
aspects of programming.

After assigning the required events and setting up
other aspects of the game such as the score board and the
room design where the objects are to be placed, the final
game is ready to be played.

Figure 2. Design of room where the objects are to be placed

IV. RDGC AND COMPUTATIONAL THINKING
How does designing the game using an RDGC tool

help improve CT? To understand this issue, we designed an
equivalent Pong game in Java and mapped the explicit
programming concepts to various aspects of RDGC. We
believe that the use of RDGC by the user before being
introduced to formal programming would create a better
understanding and improve programming skills [3].

A key aspect of CT involves object-oriented
thinking and an understanding of concepts such as objects,
events, abstraction polymorphism, and encapsulation. CT
also involves the understanding of programming structures
such as sequence, decisions, and iterations, All these
concepts show how game designing would present a
creative approach to learning basic programming concepts.
All the concepts and their implementation in the design of
the game are explained below.

A. Inheritance
Object-oriented programming allows classes

to inherit commonly used state and behavior from other
classes. Every class inherits by default object classes in the
program. The window class inherits the default applet class
and the play class inherits JFrames in the game designed
using Java.

This method of use of inheritance could be
compared to some options in Game Maker which appear
similar in action to that of inheritance though they logically
do not mean the same. Creation of sprites and inheriting the
sprites or their properties and creating objects can be taken
as an example for demonstrating inheritance in Game
Maker. Table 1 explains how Inheritance concepts are used
in the development of the Pong game

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 32

Concept Sub concepts Description RDGC implementation Java Code

Inheritance 1) Single

 Inheritance

2) Multiple
inheritance

3) Multilevel

 Inheritance

4) Hierarchical
inheritance

Inheritance is the capability
of a class to use the
properties and methods of
another class while adding
its own functionality

An Example of the use of inheritance
concept in game maker would be the use of
objects inheriting the properties of sprites in
the pong game.

Equivalent Java implementations
showing how classes inherit
properties form other.

Class bar extends Object

{ ……………

}

Where object is the default in-built
class.

EX:

Class window extends JPanel

{ ………….

}

Table 1. Inheritance concepts in Java

B. Polymorphism
. Use of Java swings and applets

Polymorphism is a programming language concept
that allows values of different data types to be handled using
a uniform interface. Polymorphism concepts such as
operator overloading are used in the program.

Java swings are used to create the window where
the game is to be played and to add the applet components
in the game.

JFrame f1=new JFrame(“game”); C. Encapsulation
The creation of a room in Game Maker, placing various
objects in the room and setting up the dimensions of the
room can be compared to that of using the swings and
applets in Java to create a window for the game.

Encapsulation is a language mechanism for
restricting access to some of the object's components. By
using access specifiers like public, private and protected, we
can restrict access to required methods.
When declared as a public method, the update method can
be called by objects in other classes as shown below.

E. Graphics
This component in Java is used to create shapes

required in the game, paint them and do appropriate changes
as required in the game. This is shown in table 3. Creation
of sprites, coloring them, setting their dimensions and
various other options in Game Maker could be compared to
that of using graphics in Java for designing.

public void update ()
{ …..}

Virtual objects are one that are not visible to users, they run
in the background but play a important role in the entire
process. Example the update functions as sown above.

Concept Sub concepts Description RDGC implementation Java Code

Polymorphism 1) Run Time polymorphism:

 a) virtual function

2) Compile Time

 polymorphism

 a) function overloading

 b) operator overloading

Polymorphism is a
programming language
feature that allows values of
different data types to be
handled using a uniform
interface.

The two bars in the pong
game can be considered as
an example for
polymorphism since both
the bars in the game use
the same sprite for their
creation but perform
different actions in the
game.

Code shows same method being called
using different parameter list.

Public void setPosition (Point
position)

{ …….}

public void setPosition(double xps,
double yps)

{ …… }

Table 2. Types of polymorphism

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 33

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Data_type

Concept Sub concepts Description RDGC implementation Java Code

Graphics 1) 2D graphic API

2) 3D graphic API

There are many in java
to enable graphics such
as use of AWT (applet
window toolkit) or
SWINGS

When the Java applet is
activated, Java looks for
a method
called paint which has a
single parameter of
type Graphics

Drawing the characters required for
the game could be considered as an
example for graphics as the design
process requires understanding of
dimensions, alignment etc.

public void paint(Graphics g)

 {

 g.setColor(new Color(0,0,0));

 g.fillOval(x,y,w,h,);

 }

This will draw t hovel shaped ball

public void paint(Graphics g)

{

g.setColor(new Color(0,0,0,0));

bll.paint(g);

player1.paint(g);

player2.paint(g);

}

This would paint the object created.

Table 3. Use of graphics in Java and relevant ways of creating graphical objects in Game Maker

F. Event
Events refer to the significant occurrence or

something that takes place upon an action performed by the
user. There are various types of events in Java such as
window events, key events, and mouse events as stated in
table 4. These events allow the user to decide the specific
task that is to be performed by the object upon assignment.
Adding events to the objects and immediately observing the
changes would provide the user a better understanding of
the events as used in programming.

G. Loops and Constructors
The use of basic loop structures such as the If–else

structure in the design of the games makes a program

perform a specific action or instruction repeatedly till a
condition occurs.

 As mentioned in table 5, examples of loops
include while loop, do-while loop, for loop, if-else ladder
and else-if ladder. Use of various events to perform an
action repeatedly can be compared to that of loops in a
programming language.

A constructor has the same name as that of the
class name and used to initialize the variables in the class as
the object is created. It is defined with the same name as the
class without any return type.

Concept Sub concepts Description RDGC implementation Java Code

Event Handling 1) Action Event

2) Adjustment Event

3) Component Event

4) Container Event

5) Focus Event

6) Item Event

7) Key Event

8) Mouse Event

9) Paint Event

10) Window Event

Event is an action that is
usually initiated outside
the scope of a program
and that is handled by a
piece of code inside the
program

The Event Menu shown Above
can be considered as an
example for the use of
different types of events while
building a game using game
maker.

aTimer = new Timer(10, new
TimerRepaintListener());

This event generates a time interval of 10
ms for each update to be performed.

this.addKeyListener (new barListener());

This event moves the bars in the pong game
by listening to the user actions. This is
performed using the key events.

Table 4. Types of events in Java and ways to assign events to objects in Game Maker

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 34

Concept Sub concepts Description RDGC implementation Java Code

Loops 1) For loop

2) While loop

3) Do while loop

4) If else loops

Loop is a control
flow statement that allows code to
be executed repeatedly based on a
boolean condition.

During the process of building a
game in Game maker the user goes
through many if-else statements for
example, the user has to decide
when a game would terminate or
when a player wins. This process
while building a game will make
him better understand loops and
control flows.

if (Condition)

{ action to be performed }

else

{ action to be performed}

Table 5. Types of loops in Java and similar application in Game Maker

V. DISCUSSION

In this paper, we have introduced the notion of
Rapid Computer Game Creation and discussed ways in
which RDGC supports CT. We do not suggest that game
creation is better with RDGC as compared to Java. Rather,
as we have argued, when RDGC is used as a precursor to
teaching a formal programming language such as Java, there
is potential for a student to subsequently gain a better
understanding of the programming constructs if the
instructor were to explain the constructs in terms of the
game that the student has created. We believe that game
building, as a pedagogical model helps teach CT in a
dynamic manner, which in turn flattens the steep learning
curve, needed to learn computer programming.

There is some evidence that game building, as a
pedagogical model would be attractive to students even if
they are not from the onset, interested in learning about CT
concepts [7]. We believe that the CT skills gained through
the RDGC tool are an effective way of teaching rudiments
of CT to all majors.

Moreover, the gap between those who use
information and computer technology and those who do not
has widened. To reduce this gap, Rapid Computer Game
Creation (RDGC) may be used as a way of introducing
students to CT and subsequently bridging the digital divide
[2] . Statistically, women, under-represented minorities and
the elderly are some of the demographic groups that are on

the low end of the digital divide. Since the appeal of games
transcends gender, age, and race, introducing RDGC can
potentially increase Information Systems (IS) and Computer
Science (CS) enrolment among groups historically known to
be under-represented in the IS and CS disciplines.

The work reported in this paper raises a number of
research issues for pedagogy on aspects related to RDGC.
There is a need for empirical studies to understand how well
the user can learn CT concepts using RDGC. There is also a
need for effective pedagogic models and best practices for
the use of RDGC in the classroom.
VI. CONCLUSION

CS and IS education needs more innovative ways
of instruction. Rapid Computer Game Creation has the
potential to be an effective pedagogical model in IS and
computing courses. It is also a useful pedagogic tool for
other academic areas and not just content areas that require
computer programming. Game construction and game
playing provides more flexibility since it uses a variety of
objects and scenarios in an interactive environment.
Curriculum designers must consider the inclusion of CT at
the pre-college level at par with other fundamental skills
such as reading, writing and algebra. Providing students
with pre-designed games templates and guiding them to
build computer games rapidly constitutes a creative
approach for promoting CT and increasing interest in the IS
discipline.

REFERENCES
[1] J .M .Conway , Alice: Easy-to-Learn 3D Scripting for

Novices, University of Virginia, 1997
[2] N. Dala., P. Dalal,, S .Kak,, P.Antonenko. and

S.Stansberry. Rapid Digital Game Creation For
Broadening Participation In Computing And Fostering
Crucial Thinking Skills, Int. J. Social and Humanistic
Computing, 1, 2, pp. 123-136, 2009.

[3] N .Dalal., P .Dalal., S .Kak., Learning Computer
Programming with Game Design, International
Conference on Computer Supported Education, 2, pp.
135-138, 2009

[4] M. Guzdial. Paving the Way for Computational
Thinking, Communications of the ACM, 51, 2008

[5] Getting started with scratch v1.4, Lifelong
Kindergarten Group, MIT media lab, 2009

[6] L .Habgood. and M.Overmars, The Game Maker’s
Apprentice: Game development for beginners. Apress,
Berkeley, CA, 2006

[7] P. Moreno-Ger, D .Burgos, I .Martinez-Ortiz,
J.L.Sierr,. and B.Fernandez-Manjon,, Educational
Game Design For Online Education, Computers In
Human Behavior, 24, 2008

[8] J. Wing, Computational Thinking. Communications of
The ACM, 49, 3, 2006

[9] YoYo Games, Game Maker, 2010, retrieved January
30, 2010 from www.yoyogames.com.

[10] Bayliss, J. D. and Strout, S. (2006), Games as a
“Flavor” of CS1, SIGCSE'06, Houston, Texas, USA.

[11] I. Parberry,.,M. B. Kazemzadeh, and Roden, T.
(2006), The Art and Science of Game Programming,
SIGCSE'06, Houston, Texas, USA.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 35

http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Statement_(programming)
http://en.wikipedia.org/wiki/Boolean_datatype

	Keywords--Rapid computer game creation,Computational Thinking, pedagogy, Computing Education, Computer Science curriculum, Information Systems curriculum
	i. INTRODUCTION
	ii. RAPID DIGITAL GAME CREATION
	iii. DESIGNING A GAME IN GAMEMAKER
	iv. RDGC AND COMPUTATIONAL THINKING
	A. Inheritance
	B. Polymorphism
	C. Encapsulation
	. Use of Java swings and applets
	E. Graphics
	F. Event
	G. Loops and Constructors

