
Memory Integrity Verification Speedup Using
Separated L2 Hash Cache

Ying Xiong

Dept. of Electrical and Computer Engineering
Oklahoma State University

Stillwater, U. S. A.
ying.xiong@okstate.edu

Abstract—We propose a novel architectural technique in this
paper in order to decrease the overhead of memory integrity
verification using cached hash trees. We suggest using a
separate L2 hash cache to store internal nodes of a hash tree
since those nodes show different locality of access than regular
application data. Our simulations results indicate that our
simple but novel scheme can reduce the overhead by 8.6% for
a heavily loaded APACHE server.

Keywords—Secure processor;Memory integrity verification;
Hash tree; Separated L2 hash cache; Performance

I. INRODUCTION AND MOTIVATION
Information security has become one of the most

important responsibilities of modern computing systems
because of expanding commercial privacy protection
requirements. Wider acceptance of e-commerce, spreading
copyright protection demands, and the threat of malware are
driving these requirements further. These applications and
the systems that execute them are facing challenges from
rapidly growing confidentiality threats [1]. These threats can
be mitigated by software solutions, such as antivirus
software, firewall, software encryption/decryption, and
spyware blockers. However, since the threats can spread
widely through operating system security loopholes,
software-based security solutions are not completely safe.
Equally important is the performance slowdown that results
from software solutions, especially when used for
encryption/decryption. Hardware security measures are
critically needed to provide more in-depth and stronger
defense solution to protect critical information. Secure
processors are a promising hardware-based measure [2]. A
secure processor only trusts the computation results inside
its boundary, for example, the processor core, and provides
us two major security measures: memory data
encryption/decryption and memory integrity verification.

The data transferred out to main memory will be
encrypted by a cryptography algorithm using a secret key.
The processor uses the corresponding key to decipher it.
Even with data encryption, a spoofing attack may replace
values in memory with spurious cipher text. If the processor
cannot detect the attack and operates on the spoofing data,
the behavior of the secure processor may be altered and

Sohum Sohoni
Dept. of Electrical and Computer Engineering

Oklahoma State University
Stillwater, U. S. A.

sohum.sohoni@okstate.edu

confidential information may be revealed. An attacker may
also use the cipher text in the main memory and re-input
them into the processor to induce it to reveal critical
information, even if he does not know the exact plaintext of
the encrypted data. This is known as a replay attack [1]. In
order to prevent spoofing and replay attack, the secure
processor needs to guarantee that nobody changes the data
without authorization. This guarantee is provided through
memory integrity verification.

Memory integrity verification will cause performance
loss due to the computation burden of hash. For example,
Gassend et al. [3], report a performance overhead of less
than 25% as the result of their improvement research work
compared to 10X overhead of a naïve implementation of
memory integrity verification. Though it is significant
progress, 25% performance loss is still unacceptable to most
users and it’s focused on SPEC CPU benchmarks, which are
not quite suitable to represent on-line transactions.

The goal of our work is to keep on improving the
performance of the memory integrity verification. We do
not focus on reducing the encryption and decryption delay
in this paper. There is prior research dedicated to mitigate
the impact of encryption and decryption delay [4].

The organization of the paper is as follows: Section II
describes related work in the field of memory integrity
verification; Section III describes cached hash tree in detail;
Section IV introduces our contribution: separated level-2
hash cache; Section V explains the simulation configuration,
including the use of SPECWeb 2005 as a more practical and
relevant benchmark for secure architectures; Section VI
presents and analyzes the simulation results; and section VII
concludes our work, discusses its limitations, and proposes
our future work.

II. RELATED WORK
Several memory integrity verification techniques have

been proposed, such as Message Authentication Code
(MAC) [5], cached hash tree [3], Message Authentication
Code Tree (M-TREE) [6], log hash technique [7] and
Bonsai Merkle Tree (BMT) [8].

In [5], Lie et al. use MAC to guarantee no data alteration
is made without authorization. A MAC is a keyed, one-way
hash of a data block. When there is data needed to be
transferred outside processor chip, store_secure instruction

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 1

generates a MAC of the encrypted data and saves it along
with the data in external memory. When that data is loaded
back using load_secure instruction, the data’s new MAC is
computed and checked with that stored in the main memory
before. If the two MACs match, the data is not altered.
Otherwise the execution is halted. However, the use of
MAC cannot eliminate replay attack. If an adversary
captures a pair of data chunk and MAC, he can re-input
them to the machine and the machine will not be able to
detect any error. In this case, the adversary may trick the
machine to leak some critical information.

In [7], Suh et al. propose log hash technique to reduce
the computation burden of memory integrity verification.
Compared to verifying integrity for each memory operation,
log hash postpones the verification to the end of a series of
memory operations. Note that the verification is still done
on all these memory operations. The advantage of log hash
is to reduce the frequency of integrity verification. It should
be mentioned that all the memory belonging to a process but
not in cache needs to be loaded into the chip to finish the
integrity verification. The machine may “freeze” doing all
the loading and hashing if the process owns a lot of
memory.

 Gassend et al. suggest caching the hash tree (Merkle
Tree, introduced in [9], and shown in Figure 1) in the level-
2 cache to decrease the overhead of loading an internal hash
tree node in [3]. Since level-2 cache is inside the chip, any
internal hash tree node loaded into the level-2 cache is
trusted and can be used to verify its child nodes’ integrity.
Therefore, it is not necessary to check the memory integrity
all the way up to the root of the hash tree when there is a
fetch of data.

Lu et at. [6] propose a novel tree-based memory integrity
verification scheme which used 32-bit MAC rather than
128-bit hash to construct a tamper-evident environment.
Because it becomes easy for an adversary to find a MAC
collision between two cache lines, though the scheme
provides substantial performance improvement, the security
it provides is degraded. The author believes that an
adversary cannot generate a MAC collision because MACs
are computed using a secret key which is only known to the
processor core. However, it is possible for an adversary to
run his malicious program on this core to generate MACs.
32-bit MAC would make the key even more vulnerable.

Rogers et al. [8] propose a novel Bonsai Merkle Tree
(BMT) scheme to reduce the size of a hash tree. Using 8 bit
counters can decrease the size of protected memory from
4GB to 64MB (1:64). A security problem arises from using
8 bit counters to generate hashes. As discussed by Rogers et
al., the difference between Hk(Cold, ctr) and Hk(Cold, ctrold) is
the key to guarantee no replay attack can be carried out.
However, it cannot guarantee that a Brute Force attack is not
able to find the correct new ctr since it is 8 bit long, which
means only 256 possibilities exist. This scheme could be
employed in situations where a reduced-strength security
model is acceptable, and where performance is critical.

BMT scheme, as well as other hash tree schemes can also
use our scheme to gain further improvement and flexibility,
which will be explained in detail in the following section.

III. SEPARATED LEVEL-2 HASH CACHE
This section first covers some background on hash trees,

and then presents the optimization.

A. Hash Tree Scheme
The cached hash tree technique is based on hash tree

(Merkle Tree). In a hash tree, memory elements are stored in
the leaf nodes. A node is usually of the size of a cache line
except the root. Starting from the very left at each level,
every m (m is the arity of the hash tree, meaning how many
children a node could have at most) consecutive nodes have
one same parent, which contains all the hash values of the m
nodes. The root of the tree is stored in secure storage, which
is inside the processor chip. Figure 1 illustrates the structure
of such a tree.

Figure 1. The structure of a hash tree.

When there is a data read miss in the cache, we need to
verify the integrity of the data block to be fetched into the
chip. The hash value of the data block (actually one of the
leaf nodes) will be calculated and compared with the value
which was stored previously. This process will be repeated
all the way up to the root node. If there is any mismatch
during the procedure, the data is not trusted and the system
will be halted. Data write misses are handled similarly in
write-allocate and write back caches. There is a slight
difference when there is a write-back. Updating a memory
chunk will result in updating the corresponding hash values
of that memory chunk.

Because each node is of the same size, for an m-ary

hash tree, it needs an extra
1

1
−m

 of the system memory to

store all the internal nodes. Therefore the more memory a
computer has, the more additional storage it needs to hold

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 2

the hash tree and the taller the hash tree will be. During the
verification procedure, more levels will be traversed in order
to reach the root. The run time is of the Log(N) order (N is
number of the total nodes).

B. Cached Hash Tree Scheme
To mitigate the performance problem, Gassend et al.

propose caching part of the hash tree in the L2 cache. Since
the L2 cache is on-chip, the cached part can be used as a
trusted base for verification, and we do not need to verify
integrity all the way up to the root of the hash tree for fetch
and write-back. Once we reach a parent node in the L2
cache and use the hash in this node to check the integrity,
the checking procedures are finished. However, writing that
memory chunk back again will require an update of its hash.
Therefore we need to have its parent node in the cache and
update the corresponding hash value. Then we can use the
updated parent node as a trusted base to verify the memory
chunk’s integrity. The dataflow for fetch and write-back
procedures for a write back cache are depicted in Figure 2
and Figure 3 respectively.

Figure 2. Flowchart of the write-back procedure

C. Separated Level-2 Hash Cache
Assume memory blocks A, B, C and D are all child

nodes of memory block X. If they are fetched into L2 cache
in turn, then cache lines occupied by A, B, C and D are
accessed once respectively. However, their parent node X is
read four times to verify each of them. From this access
pattern, we can infer that the temporal locality of cache lines
occupied by block A, B, C, and D is different than that of
cache line occupied by block X. An LRU replacement
policy will retain block X since it is accessed more recently
than either A, B, C, or D. As a result, for a hash tree scheme,
we observed that more than 50% (about 55% most of the
time, sometimes about 60%) of L2 cache space is taken up
by hash tree’s internal nodes. However, the total memory
space for storing the hash tree is 25% of the entire memory
when the tree arity is 4.

Based on this, we believe it is not optimal to cache hash
tree’s internal nodes in L2 cache together with application
data. We propose to split level-2 cache into 2 parts. One part
is used to store application data, which are the hash tree’s
leaf nodes. The other part is used to hold the hash tree’s
internal nodes. We call it level-2 hash cache (L2HC).

The benefits of a separated level-2 hash are twofold.
Firstly, it eliminates the contention between regular
application data and hash tree’s internal nodes. Therefore,
existing pre-fetch strategies and speculative methods can be
used directly on L2 cache. Otherwise, the hash tree’s
internal nodes will interfere with the correct operation of
these techniques.

Figure 3. Flowchart of fetch procedure

Secondly, since locality of these two kinds of data is
different, we could use different cache structures and
replacement schemes to fit each of them. We name the
scheme of employing another cache structure in L2 hash
cache as heterogeneous level-2 hash cache. On the other
hand, the scheme of using the same cache structure in L2
hash cache will be called as homogeneous level-2 hash
cache.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 3

 With the separated L2 hash cache added, our hardware
implementation is depicted in Figure 4.

IV. SIMULATION METHODOLOGY

Our secure architecture is simulated on Simics [10],
which is a full system simulator. Currently, we are using an
x86 core with Fedora Core 5 installed. The g-cache module
(a module used in Simics to simulate cache structure) is
employed to simulate our cache model.

At first, we did not know what kind of structure of level-
2 hash is the best. We simply split the level-2 cache into 2
even parts with the same configuration.

A separate L2 hash cache can make use of a more
appropriate cache structure to gain further performance gain.
We tried to change the ratio of the size of level-2 hash to
that of level-2 cache and the associativity of both to find out
what configuration would produce the best result.

In Section V, the overhead of the following three
systems will be illustrated.
• The first one is the original cached hash tree scheme

and with unified 1M L2 cache (Abbreviated as CHT).
• The second one is the original cached hash tree

scheme with L2 cache divided into a 512KB 8-way
L2 cache and a 512KB 8-way L2 hash cache
(Abbreviated as CHT, Ho-L2HC).

• The third system is a cached hash tree scheme with
heterogeneous L2 hash cache. (Abbreviated as CHT,
He-L2HC)

Other simulated architectural parameters are listed in
Table 1. We also need to mention, in order to keep it fair,
the total amount of level-2 cache is the same (1MB) for all
of the three systems.

TABLE I. ARCHITECTURAL PARAMETERS USED

Architectural Parameters Specifications
Clock frequency 3.6GHz

Memory size 4GB
L1 instruction cache 64KB, 2 way, 32B line

L1 data cache 64KB, 2 way, 32B line
L1 hit latency 3 cycles

L2 cache and L2 hash
cache hit latency

10 cycles

Memory latency 200 cycles
Hash latency 80 cycles

Hash input size 512 bits
Hash output size 128 bits
Hash tree arity 4

We employed the MD5 hashing algorithm [11], which
takes 512-bit blocks as input, and outputs a 128-bit hash.
MD5 has 4 rounds, which are very similar and run a
different operation 16 times. So, with proper lay-out of the
logic gates required, each operation could be finished in one
cycle, which leads to a total of 64 cycles to hash a 512-bit
block. However, we will use 80 cycles here for fair
comparison, because that is the parameter used in our
baseline cached hash-tree scheme [3].

We target a web server as our simulated platform and
employ SPECWeb 2005 [12] as our benchmark program.
We chose this as our workload because a web server of an
on-line banking, shopping or other commercial system
contains a large amount of critical financial and personal
information and hence has a higher likelihood of being
attacked than the applications represented by SPEC CPU.
SPECWeb 2005 has three kinds of workloads: Banking, E-
commerce and Support. The three workloads simulate how
clients access a web server and how the server corresponds
to the requests from these clients in 3 different situations.
We use the Support workload in this research, since it is

(a)

(b)
Figure 4. Hardware implementation of the cached hash tree

scheme with separated level-2 hash cache. (a) Fetch from main
memory. (b) Write back to main memory

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 4

known to tax the memory subsystem the most out of these
three [13].

30.0%

32.5%

35.0%

37.5%

40.0%

42.5%

45.0%

CHT CHT, Ho‐L2HC CHT, He‐L2HC

Overhead Execution Time Comparison

 SPECWeb 2005 provides many parameters for users to
configure, among which the most important one is:
concurrent_sessions. This denotes the number of clients
accessing the server simultaneously. Because a server’s
performance is measured mainly by the response time to
certain number of concurrent clients’ requests [14], and we
care most when the server is under heavy load, which means
it is a popular server and a valuable target, we run the
benchmark with the concurrent_sessions set as 1000. Our
intent is to observe the performance gain achieved by our
scheme under this heavy load situations.

For each simulation, we run 100 million instructions
after warming up the cache by 10 million instructions
starting from the same checkpoint. We then calculate the
execution overhead incurred by memory integrity
verification. Each system’s performance is denoted by
(overhead execution time) divided by (total running time
subtracted by the overhead execution time).

V. SIMULATION RESULTS AND ANALYSIS
Figure 2 indicates that we can reduce the overhead by

about 4.5% (from CHT’s 43.29% to CHT, Ho-L2HC’s
38.77%) if we separate half of L2 cache as L2 hash cache to
store internal hash tree nodes.

As mentioned earlier in Section IV, we tried various
configurations of level-2 cache and level-2 hash cache. We
found that it is better to make the ratio of the size of level-2
cache to that of level-2 hash cache less than 1. It is also
better to use large associativity in level-2 cache. The reason
is that because a level-2 cache miss would generate multiple
loads of internal nodes fetched into the same set of level-2
hash cache due to the lay-out of the hash tree.

After several experiments, we chose a system with an 8-
way 424KB L2 cache and a 12-way 600KB L2 hash cache,
which is the best level-2 cache structure we found. This
system reduces the overhead to 34.69%.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have shown the importance of

memory integrity verification, which could provide a
tamper-aware environment.

The major contributions of our work are twofold:
• We observed the difference in locality of reference

between application data and the hash tree’s
internal nodes, and proposed the use of a separate
level-2 hash cache. From the analysis in previous
sections, our scheme reduces the overhead by about
8.6% compared to the cached hash tree scheme.

• SPECWeb can simulate a heavily loaded server,
which is a more relevant benchmark program for
research on secure processors.

Figure 5. Overhead execution time comparison

We also found that during a smaller simulation, for
example 100 thousand instructions, it is more profitable to
cache hash tree’s internal nodes of lower level in that hash
tree. Because of the locality, programs will not jump too far
in a short time. Lower level nodes could make integrity
verification faster. If program jumps further enough, things
may change. In that situation, a higher level node may be
preferred. Therefore, replacement strategy of L2 hash cache
needs to be studied in the future to further exploit this
phenomenon. We will target an adaptive replacement
strategy in our future work.

Because our simulations are carried out on a simulated
scalar machine, the overhead is higher than that of the
superscalar counterpart. The 43.29% overhead of our
simulated machine is comparable to the 25% performance
loss mentioned in [3]. Therefore, we will implement our
scheme on a superscalar machine in the future, where we
expect to achieve better results.

REFERENCES

[1] R. Panko, Corporate Computer and Network Security:

Prentice Hall, 2003.
[2] R. Kannavara and N. G. Bourbakis, "Surveying secure

processors," Potentials, IEEE, vol. 28, pp. 28-34, 2009.
[3] B. Gassend, et al., "Caches and Hash Trees for Efficient

Memory Integrity Verification," presented at the Proceedings
of the 9th International Symposium on High-Performance
Computer Architecture, 2003.

[4] J. Yang, et al., "Improving memory encryption performance
in secure processors," Computers, IEEE Transactions on, vol.
54, pp. 630-640, 2005.

[5] D. Lie, et al., "Architectural support for copy and tamper
resistant software," SIGPLAN Not., vol. 35, pp. 168-177,
2000.

[6] C. Lu, et al., "M-TREE: a high efficiency security architecture
for protecting integrity and privacy of software," J. Parallel
Distrib. Comput., vol. 66, pp. 1116-1128, 2006.

[7] G. E. Suh, et al., "Efficient memory integrity verification and
encryption for secure processors," 2003, pp. 339-350.

[8] B. Rogers, et al., "Using Address Independent Seed
Encryption and Bonsai Merkle Trees to Make Secure

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 5

Processors OS- and Performance-Friendly," in
Microarchitecture, 2007. MICRO 2007. 40th Annual
IEEE/ACM International Symposium on, 2007, pp. 183-196.

[9] R. C. Merkle, "Protocols for Public Key Cryptosystems,"
presented at the Security and Privacy, IEEE Symposium on,
1980.

[10] Simics-3. (2007). Simics User Guide for Unix.
Available: www.simics.net

[11] B. Schneier, Applied Cryptography Second Edition:
protocols, algorithms, and source code in C: John Wiley &
Sons, Inc, 1996.

[12] SPECWeb-2005. (2006, SPECweb2005 Release 1.20
Benchmark Design Document.
Available: http://www.spec.org/web2005/docs/designdocume
nt.html

[13] B. Ana, et al., "Characterization of Apache web server with
Specweb2005," presented at the Proceedings of the 2007
workshop on Memory performance: Dealing with
Applications, systems and architecture, Brasov, Romania,
2007.

[14] M. Vipul, et al., "MASTH proxy: an extensible platform for
web overload control," presented at the Proceedings of the
18th international conference on World wide web, Madrid,
Spain, 2009.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 6

http://www.simics.net/
http://www.spec.org/web2005/docs/designdocument.html
http://www.spec.org/web2005/docs/designdocument.html

	Ying Xiong
	Abstract—We propose a novel architectural technique in this paper in order to decrease the overhead of memory integrity verification using cached hash trees. We suggest using a separate L2 hash cache to store internal nodes of a hash tree since those nodes show different locality of access than regular application data. Our simulations results indicate that our simple but novel scheme can reduce the overhead by 8.6% for a heavily loaded APACHE server.
	Sohum Sohoni
	III. SEPARATED LEVEL-2 HASH CACHE
	A. Hash Tree Scheme
	B. Cached Hash Tree Scheme
	C. Separated Level-2 Hash Cache

