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Abstract—We propose a novel architectural technique in this 
paper in order to decrease the overhead of memory integrity 
verification using cached hash trees. We suggest using a 
separate L2 hash cache to store internal nodes of a hash tree 
since those nodes show different locality of access than regular 
application data. Our simulations results indicate that our 
simple but novel scheme can reduce the overhead by 8.6% for 
a heavily loaded APACHE server. 
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I. INRODUCTION AND MOTIVATION 
Information security has become one of the most 

important responsibilities of modern computing systems 
because of expanding commercial privacy protection 
requirements. Wider acceptance of e-commerce, spreading 
copyright protection demands, and the threat of malware are 
driving these requirements further. These applications and 
the systems that execute them are facing challenges from 
rapidly growing confidentiality threats [1]. These threats can 
be mitigated by software solutions, such as antivirus 
software, firewall, software encryption/decryption, and 
spyware blockers. However, since the threats can spread 
widely through operating system security loopholes, 
software-based security solutions are not completely safe. 
Equally important is the performance slowdown that results 
from software solutions, especially when used for 
encryption/decryption. Hardware security measures are 
critically needed to provide more in-depth and stronger 
defense solution to protect critical information. Secure 
processors are a promising hardware-based measure [2]. A 
secure processor only trusts the computation results inside 
its boundary, for example, the processor core, and provides 
us two major security measures: memory data 
encryption/decryption and memory integrity verification.  

The data transferred out to main memory will be 
encrypted by a cryptography algorithm using a secret key. 
The processor uses the corresponding key to decipher it. 
Even with data encryption, a spoofing attack may replace 
values in memory with spurious cipher text. If the processor 
cannot detect the attack and operates on the spoofing data, 
the behavior of the secure processor may be altered and  
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confidential information may be revealed. An attacker may 
also use the cipher text in the main memory and re-input 
them into the processor to induce it to reveal critical 
information, even if he does not know the exact plaintext of 
the encrypted data. This is known as a replay attack [1]. In 
order to prevent spoofing and replay attack, the secure 
processor needs to guarantee that nobody changes the data 
without authorization. This guarantee is provided through 
memory integrity verification. 

Memory integrity verification will cause performance 
loss due to the computation burden of hash. For example, 
Gassend et al. [3], report a performance overhead of less 
than 25% as the result of their improvement research work 
compared to 10X overhead of a naïve implementation of 
memory integrity verification. Though it is significant 
progress, 25% performance loss is still unacceptable to most 
users and it’s focused on SPEC CPU benchmarks, which are 
not quite suitable to represent on-line transactions.  

The goal of our work is to keep on improving the 
performance of the memory integrity verification. We do 
not focus on reducing the encryption and decryption delay 
in this paper. There is prior research dedicated to mitigate 
the impact of encryption and decryption delay [4]. 

The organization of the paper is as follows: Section II 
describes related work in the field of memory integrity 
verification; Section III describes cached hash tree in detail; 
Section IV introduces our contribution: separated level-2 
hash cache; Section V explains the simulation configuration, 
including the use of SPECWeb 2005 as a more practical and 
relevant benchmark for secure architectures; Section VI 
presents and analyzes the simulation results; and section VII 
concludes our work, discusses its limitations, and proposes 
our future work. 

II. RELATED WORK 
Several memory integrity verification techniques have 

been proposed, such as Message Authentication Code 
(MAC) [5], cached hash tree [3], Message Authentication 
Code Tree (M-TREE) [6], log hash technique [7] and 
Bonsai Merkle Tree (BMT) [8].  

In [5], Lie et al. use MAC to guarantee no data alteration 
is made without authorization.  A MAC is a keyed, one-way 
hash of a data block. When there is data needed to be 
transferred outside processor chip, store_secure instruction 

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 1



generates a MAC of the encrypted data and saves it along 
with the data in external memory. When that data is loaded 
back using load_secure instruction, the data’s new MAC is 
computed and checked with that stored in the main memory 
before. If the two MACs match, the data is not altered. 
Otherwise the execution is halted. However, the use of 
MAC cannot eliminate replay attack. If an adversary 
captures a pair of data chunk and MAC, he can re-input 
them to the machine and the machine will not be able to 
detect any error. In this case, the adversary may trick the 
machine to leak some critical information.  

In [7], Suh et al. propose log hash technique to reduce 
the computation burden of memory integrity verification. 
Compared to verifying integrity for each memory operation, 
log hash postpones the verification to the end of a series of 
memory operations. Note that the verification is still done 
on all these memory operations. The advantage of log hash 
is to reduce the frequency of integrity verification. It should 
be mentioned that all the memory belonging to a process but 
not in cache needs to be loaded into the chip to finish the 
integrity verification. The machine may “freeze” doing all 
the loading and hashing if the process owns a lot of 
memory. 

  Gassend et al. suggest caching the hash tree (Merkle 
Tree, introduced in [9], and shown in Figure 1) in the level-
2 cache to decrease the overhead of loading an internal hash 
tree node in [3]. Since level-2 cache is inside the chip, any 
internal hash tree node loaded into the level-2 cache is 
trusted and can be used to verify its child nodes’ integrity. 
Therefore, it is not necessary to check the memory integrity 
all the way up to the root of the hash tree when there is a 
fetch of data.  

Lu et at. [6] propose a novel tree-based memory integrity 
verification scheme which used 32-bit MAC rather than 
128-bit hash to construct a tamper-evident environment.  
Because it becomes easy for an adversary to find a MAC 
collision between two cache lines, though the scheme 
provides substantial performance improvement, the security 
it provides is degraded. The author believes that an 
adversary cannot generate a MAC collision because MACs 
are computed using a secret key which is only known to the 
processor core. However, it is possible for an adversary to 
run his malicious program on this core to generate MACs. 
32-bit MAC would make the key even more vulnerable. 

Rogers et al. [8] propose a novel Bonsai Merkle Tree 
(BMT) scheme to reduce the size of a hash tree. Using 8 bit 
counters can decrease the size of protected memory from 
4GB to 64MB (1:64). A security problem arises from using 
8 bit counters to generate hashes. As discussed by Rogers et 
al., the difference between Hk(Cold, ctr) and Hk(Cold, ctrold) is 
the key to guarantee no replay attack can be carried out. 
However, it cannot guarantee that a Brute Force attack is not 
able to find the correct new ctr since it is 8 bit long, which 
means only 256 possibilities exist. This scheme could be 
employed in situations where a reduced-strength security 
model is acceptable, and where performance is critical. 

BMT scheme, as well as other hash tree schemes can also 
use our scheme to gain further improvement and flexibility, 
which will be explained in detail in the following section. 

III. SEPARATED LEVEL-2 HASH CACHE 
This section first covers some background on hash trees, 

and then presents the optimization. 

A.   Hash Tree Scheme 
The cached hash tree technique is based on hash tree 

(Merkle Tree). In a hash tree, memory elements are stored in 
the leaf nodes. A node is usually of the size of a cache line 
except the root. Starting from the very left at each level, 
every m (m is the arity of the hash tree, meaning how many 
children a node could have at most) consecutive nodes have 
one same parent, which contains all the hash values of the m 
nodes. The root of the tree is stored in secure storage, which 
is inside the processor chip. Figure 1 illustrates the structure 
of such a tree. 

 
Figure 1. The structure of a hash tree.   

When there is a data read miss in the cache, we need to 
verify the integrity of the data block to be fetched into the 
chip. The hash value of the data block (actually one of the 
leaf nodes) will be calculated and compared with the value 
which was stored previously. This process will be repeated 
all the way up to the root node. If there is any mismatch 
during the procedure, the data is not trusted and the system 
will be halted. Data write misses are handled similarly in 
write-allocate and write back caches. There is a slight 
difference when there is a write-back. Updating a memory 
chunk will result in updating the corresponding hash values 
of that memory chunk. 

Because each node is of the same size, for an m-ary 

hash tree, it needs an extra 
1

1
−m

 of the system memory to 

store all the internal nodes. Therefore the more memory a 
computer has, the more additional storage it needs to hold 
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the hash tree and the taller the hash tree will be. During the 
verification procedure, more levels will be traversed in order 
to reach the root. The run time is of the Log(N) order (N is 
number of the total nodes). 

B.   Cached Hash Tree Scheme 
To mitigate the performance problem, Gassend et al. 

propose caching part of the hash tree in the L2 cache. Since 
the L2 cache is on-chip, the cached part can be used as a 
trusted base for verification, and we do not need to verify 
integrity all the way up to the root of the hash tree for fetch 
and write-back. Once we reach a parent node in the L2 
cache and use the hash in this node to check the integrity, 
the checking procedures are finished. However, writing that 
memory chunk back again will require an update of its hash. 
Therefore we need to have its parent node in the cache and 
update the corresponding hash value. Then we can use the 
updated parent node as a trusted base to verify the memory 
chunk’s integrity. The dataflow for fetch and write-back 
procedures for a write back cache are depicted in Figure 2 
and Figure 3 respectively.  

 
Figure 2. Flowchart of the write-back procedure 

C.   Separated Level-2 Hash Cache 
Assume memory blocks A, B, C and D are all child 

nodes of memory block X. If they are fetched into L2 cache 
in turn, then cache lines occupied by A, B, C and D are 
accessed once respectively. However, their parent node X is 
read four times to verify each of them. From this access 
pattern, we can infer that the temporal locality of cache lines 
occupied by block A, B, C, and D is different than that of 
cache line occupied by block X.  An LRU replacement 
policy will retain block X since it is accessed more recently 
than either A, B, C, or D. As a result, for a hash tree scheme, 
we observed that more than 50% (about 55% most of the 
time, sometimes about 60%) of L2 cache space is taken up 
by hash tree’s internal nodes. However, the total memory 
space for storing the hash tree is 25% of the entire memory 
when the tree arity is 4.  

Based on this, we believe it is not optimal to cache hash 
tree’s internal nodes in L2 cache together with application 
data. We propose to split level-2 cache into 2 parts. One part 
is used to store application data, which are the hash tree’s 
leaf nodes. The other part is used to hold the hash tree’s 
internal nodes. We call it level-2 hash cache (L2HC). 

The benefits of a separated level-2 hash are twofold. 
Firstly, it eliminates the contention between regular 
application data and hash tree’s internal nodes. Therefore, 
existing pre-fetch strategies and speculative methods can be 
used directly on L2 cache. Otherwise, the hash tree’s 
internal nodes will interfere with the correct operation of 
these techniques.  

 
 

     
Figure 3. Flowchart of fetch procedure 

Secondly, since locality of these two kinds of data is 
different, we could use different cache structures and 
replacement schemes to fit each of them. We name the 
scheme of employing another cache structure in L2 hash 
cache as heterogeneous level-2 hash cache. On the other 
hand, the scheme of using the same cache structure in L2 
hash cache will be called as homogeneous level-2 hash 
cache.  
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     With the separated L2 hash cache added, our hardware 
implementation is depicted in Figure 4. 

 

 
IV. SIMULATION METHODOLOGY 

Our secure architecture is simulated on Simics [10], 
which is a full system simulator. Currently, we are using an 
x86 core with Fedora Core 5 installed. The g-cache module 
(a module used in Simics to simulate cache structure) is 
employed to simulate our cache model.  

At first, we did not know what kind of structure of level-
2 hash is the best. We simply split the level-2 cache into 2 
even parts with the same configuration.  

A separate L2 hash cache can make use of a more 
appropriate cache structure to gain further performance gain. 
We tried to change the ratio of the size of level-2 hash to 
that of level-2 cache and the associativity of both to find out 
what configuration would produce the best result. 

In Section V, the overhead of the following three 
systems will be illustrated.  
• The first one is the original cached hash tree scheme 

and with unified 1M L2 cache (Abbreviated as CHT). 
• The second one is the original cached hash tree 

scheme with L2 cache divided into a 512KB 8-way 
L2 cache and a 512KB 8-way L2 hash cache 
(Abbreviated as CHT, Ho-L2HC).  

• The third system is a cached hash tree scheme with 
heterogeneous L2 hash cache. (Abbreviated as CHT, 
He-L2HC) 

Other simulated architectural parameters are listed in 
Table 1. We also need to mention, in order to keep it fair, 
the total amount of level-2 cache is the same (1MB) for all 
of the three systems. 

TABLE I. ARCHITECTURAL PARAMETERS USED 

Architectural Parameters Specifications 
Clock frequency 3.6GHz 

Memory size 4GB 
L1 instruction cache 64KB, 2 way, 32B line 

L1 data cache 64KB, 2 way, 32B line 
L1 hit latency 3 cycles 

L2 cache and L2 hash 
cache hit latency 

10 cycles 

Memory latency 200 cycles 
Hash latency 80 cycles 

Hash input size 512 bits 
Hash output size 128 bits 
Hash tree arity 4 

We employed the MD5 hashing algorithm [11], which 
takes 512-bit blocks as input, and outputs a 128-bit hash. 
MD5 has 4 rounds, which are very similar and run a 
different operation 16 times. So, with proper lay-out of the 
logic gates required, each operation could be finished in one 
cycle, which leads to a total of 64 cycles to hash a 512-bit 
block. However, we will use 80 cycles here for fair 
comparison, because that is the parameter used in our 
baseline cached hash-tree scheme [3]. 

We target a web server as our simulated platform and 
employ SPECWeb 2005 [12] as our benchmark program. 
We chose this as our workload because a web server of an 
on-line banking, shopping or other commercial system 
contains a large amount of critical financial and personal 
information and hence has a higher likelihood of being 
attacked than the applications represented by SPEC CPU. 
SPECWeb 2005 has three kinds of workloads: Banking, E-
commerce and Support. The three workloads simulate how 
clients access a web server and how the server corresponds 
to the requests from these clients in 3 different situations. 
We use the Support workload in this research, since it is 

 
(a) 

(b) 
Figure 4.  Hardware implementation of the cached hash tree 

scheme with separated level-2 hash cache. (a) Fetch from main 
memory. (b) Write back to main memory 
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known to tax the memory subsystem the most out of these 
three [13].  

30.0%

32.5%

35.0%

37.5%

40.0%

42.5%

45.0%

CHT CHT, Ho‐L2HC CHT, He‐L2HC

Overhead Execution Time Comparison

  SPECWeb 2005 provides many parameters for users to 
configure, among which the most important one is:  
concurrent_sessions. This denotes the number of clients 
accessing the server simultaneously. Because a server’s 
performance is measured mainly by the response time to 
certain number of concurrent clients’ requests [14], and we 
care most when the server is under heavy load, which means 
it is a popular server and a valuable target, we run the 
benchmark with the concurrent_sessions set as 1000. Our 
intent is to observe the performance gain achieved by our 
scheme under this heavy load situations. 

For each simulation, we run 100 million instructions 
after warming up the cache by 10 million instructions 
starting from the same checkpoint. We then calculate the 
execution overhead incurred by memory integrity 
verification. Each system’s performance is denoted by 
(overhead execution time) divided by (total running time 
subtracted by the overhead execution time).  

V.   SIMULATION RESULTS AND ANALYSIS 
Figure 2 indicates that we can reduce the overhead by 

about 4.5% (from CHT’s 43.29% to CHT, Ho-L2HC’s 
38.77%) if we separate half of L2 cache as L2 hash cache to 
store internal hash tree nodes.  

As mentioned earlier in Section IV, we tried various 
configurations of level-2 cache and level-2 hash cache. We 
found that it is better to make the ratio of the size of level-2 
cache to that of level-2 hash cache less than 1. It is also 
better to use large associativity in level-2 cache. The reason 
is that because a level-2 cache miss would generate multiple 
loads of internal nodes fetched into the same set of level-2 
hash cache due to the lay-out of the hash tree.  

After several experiments, we chose a system with an 8-
way 424KB L2 cache and a 12-way 600KB L2 hash cache, 
which is the best level-2 cache structure we found. This 
system reduces the overhead to 34.69%. 

VI.    CONCLUSION AND FUTURE WORK 
In this paper, we have shown the importance of 

memory integrity verification, which could provide a 
tamper-aware environment. 

The major contributions of our work are twofold: 
• We observed the difference in locality of reference 

between application data and the hash tree’s 
internal nodes, and proposed the use of a separate 
level-2 hash cache. From the analysis in previous 
sections, our scheme reduces the overhead by about 
8.6% compared to the cached hash tree scheme.  

• SPECWeb can simulate a heavily loaded server, 
which is a more relevant benchmark program for 
research on secure processors. 

 

 

Figure 5. Overhead execution time comparison 

We also found that during a smaller simulation, for 
example 100 thousand instructions, it is more profitable to 
cache hash tree’s internal nodes of lower level in that hash 
tree. Because of the locality, programs will not jump too far 
in a short time. Lower level nodes could make integrity 
verification faster. If program jumps further enough, things 
may change. In that situation, a higher level node may be 
preferred. Therefore, replacement strategy of L2 hash cache 
needs to be studied in the future to further exploit this 
phenomenon. We will target an adaptive replacement 
strategy in our future work. 

Because our simulations are carried out on a simulated 
scalar machine, the overhead is higher than that of the 
superscalar counterpart. The 43.29% overhead of our 
simulated machine is comparable to the 25% performance 
loss mentioned in [3]. Therefore, we will implement our 
scheme on a superscalar machine in the future, where we 
expect to achieve better results. 
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