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Abstract—In this paper, we propose a human daily activity
recognition method by fusing the data from two wearable inertial
sensors attached on one foot and the waist of the human subject,
respectively. We developed a multi-sensor fusion scheme for
activity recognition. First, data from these two sensors are fused
for coarse-grained classification in order to determine the type of
the activity: zero displacement activity, transitional activity, and
strong displacement activity. Second, a fine-grained classification
module based on heuristic discrimination or hidden Markov
models (HMMs) is applied to further distinguish the activities. We
conducted experiments using a prototype wearable sensor system
and the obtained results prove the effectiveness and accuracy of
our algorithm.

I. Introduction

A. Motivation

The past decade has seen a steady growth of elderly popula-
tion. As the baby boomers comprise nearly 20 percent of the
U.S. population, which is equal to 76.1 million Americans
[1], many of them will turn 65 and are prone to health
complications and this may cause an increased burden on the
medical industry. Compared to the rest of the population, more
seniors live alone as the sole occupants of a private dwelling
than any other population group. Therefore, elderly people
living alone are an at-risk group. Helping them to live a better
life is very important and has great societal benefits.

Many researchers are working on new technologies to help
elderly people [2], [3]. We are developing a smart assisted
living (SAIL) system [4], [5] to help and provide support
to elderly people when there is an emergency situation. The
SAIL system consists of a body sensor network (BSN) [6], a
companion robot, a Smartphone, and a remote health provider.
In order to enable natural human-robot interaction, the robot
needs to infer the human intentions and situations from the
motion data and vital signs of the human subject. For example,
when an elderly person falls down accidently, the algorithm
will be able to detect this situation and communicate with
a companion robot to help the patient. Therefore, there is a
great need for the robot to have the capability to recognize the
human’s activities.

B. Related work

Traditional human activity recognition is through visual
information [7], [8]. Recently, due to the advancement in
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MEMS and VLSI technologies, wearable sensors-based activ-
ity recognition has been gaining attention. Wearable inertial
sensors and fiber sensors can be attached to different human
body parts to capture kinetic data. Sagawa et al. [9] discussed
a method to classify human moving behaviors using one
acceleration sensor and one air pressure sensor attached on
the waist. A slight change of air pressure which results from
vertical movement is used to detect the moving styles of going
up/down the stairs or in an elevator. Mantyjarvi et al. [10] used
two sets of accelerometers attached on the left and right side
of the hip for activity recognition. Lester et al. [11] tested by
attaching the sensor board on different parts of the human body
and concluded that when training data and testing data are
collected from the same locations on the body, the algorithm
can pick the right subset of discriminatory features that will
work for all those locations. Amft et al. [12] investigated
the use of force sensitive resistors and fabric stretch sensors
that can be easily integrated into clothing. They used these
sensors to detect the contractions of arm muscles and argued
that the sensors can provide important information for activity
recognition.

Recently machine learning algorithms [13] have been
widely used for human activity recognition. Many solutions
have been developed over the years, including the heuristic
analysis methods [14], the discriminative methods [15], [16],
the generative methods [17], and some combinations of them.
Heuristic analysis methods are through the direct character-
istic analysis and the feature description of the data from
accelerometers. Aminian et al. [14] developed an algorithm
based on the analysis of the average and the deviation of
the acceleration signal to classify the activities into four cate-
gories: lying, sitting, standing and locomotion. Discriminative
methods analyze features extracted from sensor data points or
segmentations without considering sequential connections in
the data. For example, in [10], principal components analysis
(PCA) and independent component analysis (ICA) are used
in the feature generation process with wavelet transform for
the two sets of accelerometers attached on different parts of
the human body. Generative methods use generative models
for the probability-based observations with hidden parameters.
It specifies a joint probability distribution over observation
and label sequences, whereas discriminative methods only
consider the observed variables, not the sequential data. For
example, DeVaul et al. [18] developed a two-layer model that
combines a multi-component Gaussian mixture model with
Markov models to accurately classify a range of user activity
states, including sitting, walking, biking, etc. By combining
different methods, the advantages of each method can be
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better utilized to solve complicated problems. Lester et al. [19]
presented a hybrid approach to recognize human activities,
which combines boosting [20] to discriminatively select useful
features and learn an ensemble of static classifiers to recognize
different activities, with hidden Markov models (HMMs) [17]
to capture the temporal regularities and smoothness of activi-
ties. To summarize, heuristic analysis methods require intuitive
analysis on the raw sensor data or the features from data, and
the characteristics may differ from each individual. Therefore,
it is difficult to find a ubiquitous way for observation. On
the contrary, since discriminative methods and generative
methods are machine learning algorithms, the parameters can
be trained using data from different individuals. However, their
disadvantage is the high computational cost. The combination
of different methods can achieve better performance than any
single method.

In this paper, we proposed a 2-step human daily activity
recognition method combining the neural networks and the
hidden Markov models. In the first step, the fusion of the data
from the two wearable sensors generates the coarse-grained
classification of human daily activities. In the second step, (1)
the heuristic discrimination module or (2) the HMM-based
recognition algorithm is used for the fine-grained classifica-
tion. In this way, the coarse-grained classification controls the
direction of the data flow to trigger either the heuristic dis-
crimination module or the HMM-based recognition module in
order to save the computation time and enhance the efficiency
of the recognition algorithm.

This paper is organized as follows. Section II introduces
the overall framework of the human daily activity recognition
system. Section III describes the neural network-based activity
coarse-grained classification algorithm. Section IV explains
the mechanism of the HMM-based activity recognition algo-
rithm. The experimental results are presented in Section V.
Conclusions and future work are given in Section VI.
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Fig. 1. The prototype of the wearable sensor system for human daily activity
recognition.

II. System Overview

The prototype of the wearable sensors for human daily
activity recognition is shown in Figure 1. We use two inertial
sensors (nIMU NA05-0600F050R) from MEMSense, LLC,
which provide 3D acceleration, angular velocity, magnetic
data, and temperature. Both inertial sensors are connected

to a PDA through RS422/RS232 serial converters, and the
PDA sends data to a desktop computer through WiFi, where
the data are processed to recognize different activities. The
data-collection program for the PDA is written in Visual
C++ and the HMM training/recognition program is written
in MATLAB.
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Fig. 2. The overview of the human daily activity recognition system.

The major criteria for our recognition algorithm are the
efficiency and accuracy of the recognition algorithm. For
embedded computing systems, it is important to design al-
gorithms with light-weight and resource-awareness to save
energy and increase the efficiency. In this paper, we propose
an innovative method which is self-adaptive and efficient
to recognize different human daily activities by two inertial
sensors attached to one foot and the waist of the human
subject, respectively. Motion data including 3D acceleration
and angular velocity are collected, fused and classified. In
this project, we consider the following activities: (1) AZ =

zero displacement activities: standing, sitting, and sleeping;
(2) AT = transitional activities: sitting-to-standing, standing-
to-sitting, level walking-to-stair walking, and stair walking-
to-level walking; (3) AS = strong displacement activities:
walking level, walking upstairs, walking downstairs, and run-
ning. More activities can be recognized with extra sensors. For
example, cooking and watching TV can be recognized when
the environmental audio information is recorded.

Figure 2 shows the block diagram of our algorithm. In the
coarse-grained classification module, raw data (acceleration
and angular velocity) are processed to obtain the features
(mean, variance and covariance of the 3D acceleration and
3D angular velocity), which are fed into the corresponding
neural network NN f and NNw for foot and waist, respectively.
We categorize the outputs of the neural networks NN f and
NNs into three types: (1) stationary, (2) transitional, and (3)
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Fig. 3. The structure of 3-layer feed-forward neural network.

cyclic. A fusion module integrates the individual types of foot
and waist activities and categorizes the human daily activities
according to the following rules in Table I: (1) zero displace-
ment activities: A ∈ AZ i f f Aw = stationary; (2) transitional:
A ∈ AT i f f (Af =transitional and Aw =transitional) or (A f =

stationary and Aw = transitional); (3) strong displacement
activities: A ∈ AS i f f A f = cyclic and Aw = cyclic. All other
combinations of foot and waist activities are considered as rare
activities and we do not consider them in this project.

In the fine-grained classification module, to further dis-
tinguish the stationary activities (such as sitting and stand-
ing) and the transitional activities (such as sitting-to-
standing and standing-to-sitting), a discrimination module
will be applied to consider the previous stationary activ-
ity state and decide the type of the current transitional
activity. A hidden Markov model (HMM)-based recogni-
tion algorithm is applied to further determine the types
of the strong displacement activities, which is to recog-
nize the patterns of the continuous time series of data.

 

III. Neural Network-based Segmentation

A. Overview of the neural networks

In this paper, we implemented two feed-forward neural
networks [21] to spot non-stationary activities from stationary
activities. The neural networks NN f and NNw both generate
distinctive outputs for stationary activities, transitional and
strong displacement activities, respectively. Generally, in daily
life, when people stand, sit, stand-to-sit, sit-to-stand, or sleep,
their feet do not exhibit extensive motions. Therefore, we use
the variance of 3D acceleration and 3D angular velocity to
represent the intensity of the movement. The outputs of NN w

and NNf are fused and a heuristic segmentation refinement is
applied to produce the start and the end point of the segment.

The details of the neural network module is shown in
Figure 3: the input is a n-by-1 feature vector extracted from
the sensor raw data, which represents n features. f1 and f2 are
the log-sigmoid functions and f3 is the ’compet’ function. The
parameters W1, b1, W2, and b2 are trained through the back-
propagation method. W3=1 and b3=0 are fixed to generate
discrete outputs.

B. Training of the neural network

Supervised learning is used to train the neural networks
[21]. In the training mode, the experimenter labels the correct
type when the human subject is performing daily activities.
The label is recorded together with the raw data on the PDA.
The back-propagation method is implemented to train the
weights and biases of neurons in the first and the second
layers. Training starts from a set of random value of weights
and biases, and are updated at each iteration to minimize the
performance index in order to achieve the minimal of mean
square error. However, since not every set of random initial
values can ensure that the performance index approaches a
certain level, the initial value need to be adjusted in the training
step. Moreover, the number of neurons in each layer of the
network has to be modified in order to achieve the highest
accuracy and avoid over-fit as well.

IV. HMM-based Recognition

In our previous work, we have developed an HMM-based
algorithm for hand gesture recognition [4], [5]. For activity
recognition, HMMs are applied to the data segmentation
from the foot sensor where strong displacement activities are
detected by the neural network NNw and NNf .

The major steps of the recognition algorithm include data
pre-processing, the HMM training phase, the HMM-based
recognition phase.

A. Data pre-processing

Data pre-processing is applied to the raw data before
they are fed into the hidden Markov models in both the
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training phase and the recognition phase. When the com-
puter receives the data, sampled at a rate of 150 Hz from
the nIMU sensor, a digital low-pass filter is applied to the
3D acceleration [ax, ay, az]T and the 3D angular velocity
[ωx, ωy, ωz]T of the data and produces a 6-component vector
u = [a f

x , a
f
y , a

f
z , ω

f
x , ω

f
y , ω

f
z ]T for each sampling point. Af-

terward, a sliding-window of 20 points which is about 133
ms in the time domain is used to calculate the average in
order to remove the DC components on 3D acceleration and
generate the vector w = [dx, dy, dz]T . Because the Fast Fourier
Transform (FFT) can give us the power components in the
frequency domain, we remove the DC components and offset
the means of gravity in order to find the fundamental frequency
of the behavior. Since this 3D vector w will be used in the
training phase to determine the length for each activity, we
propose a new vector including both kinds of information as a
result of pre-processing. Finally, a vector of 3D acceleration,
3D angular velocity, and 3D deviation of the acceleration is
constructed for each data point.

v = [uT , ωT ]T = [a f
x , a

f
y , a

f
z , ω

f
x , ω

f
y , ω

f
z , dx, dy, dz]T

B. HMM training phase

Each strong displacement activity is represented by one
HMM model trained by a series of data recorded when the
human subject repeatedly performs the same activity in the
training phase. Each parameter set of an HMM is trained by
the data blocks with a specific label number indicating the
type of activity recorded prior. The centroid of the K-means
clustering is also trained for vector quantization and saved for
the recognition phase.
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Fig. 4. The flow chart of the HMM-based activity recognition algorithm.

C. HMM-based recognition phase

After the neural network module and sensor data fusion, the
data is classified into zero displacement activities, transitional
activities, and strong displacement activities. The data block
of strong displacement activities is fed into the HMM-based
activity recognition module. As shown in Figure 4, the data
pre-processing is applied to the gesture data and the centroid
trained in the training phase is used afterward to quantify the
vectors into observable symbols. Then a sliding-window of 1
second length is moving along the symbol sequence and the
likelihood under each set of HMM parameters is estimated. We
choose the model which maximizes the likelihood over other
HMMs to be the recognized type as the output decision of
the sliding-window. Thus, this HMM-based recognition phase

gives a series of decisions on the activity based on the trained
parameters of HMMs.

V. Experimental Results

In our experiments, the human subject wore two sensors:
one on the right foot and the other on the waist as shown in
Figure 1. Regular daily activities were performed: standing,
sitting, walking level, walking upstairs, walking downstairs,
running, sleeping, etc. We recorded five sets of data for
the training purpose and five sets for the recognition testing
purpose.

A. Evaluation of the NN-based coarse-grained classification

The first and the second layers of the neural network are
trained through MATLAB Neural Network Toolbox. The num-
ber of neurons in each layer is determined by balancing the
training iterations and the performance index of the network.
The initial values of the weights and biases are randomly
selected, which will lead the performance of the network
approach a local minimal. Within 300 iterations and a goal of
0.05, different initial values achieve various performances. The
performance is monitored in order to achieve good training
results. If the performance curve does not meet the goal, the
training has to be restarted. The neural network NNw for the
waist and the neural network NN f for the foot are trained
separately using the data from its corresponding sensor.

Figure 5 shows good and bad training results of the neural
networks, respectively. Only when the performance curve goes
below the goal, the network can achieve adequate accuracy and
a few error points scattered on the edges of the blocks. If the
training goal has not been met, there will be consecutive errors
which cause errors in sensor fusion.

 
 

 
HMM decision Type Activity 

Type Walking Walking downstairs Walking upstairs running 
Walking 0.9030 0.0581 0.0360 0.0029 

Walking downstairs 0.0478 0.9250 0.0270 0.0020 
Walking upstairs 0.0759 0.0289 0.8915 0.0037 

running 0.0901 0.0120 0.0278 0.8701 
Accuracy 0.9030 0.9250 0.8915 0.8701 

B. Evaluation of the HMM-based recognition algorithm

Based on the results of the neural network, the hidden
Markov model block is switched on when there is a cyclic
activity. A sliding-window moves along the segmented data
with the length of 1 second and step length of 0.2 second. The
output of the sliding-window is a sequence of classification
decisions. Then, a voting function follows to produce a single
decision for each 1 second of time period. The HMM-based
recognition results on the testing data after the voting function
are shown in Table II. The percentages of decision under each
ground truth are listed in each row, where the values on the
diagonal indicate the accuracy of each activity.

The final result is a sequence of decisions corresponding
to the time. For example, Figure 6 shows the raw angular
velocity (top), and the decision results after the voting function
compared with the ground truth (bottom). In the top figure, the
3D angular velocity from the sensor indicates several cyclic
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Fig. 5. Left: The performance goal of the foot sensor was met, accuracy =98.40%. Right: The performance goal of the foot sensor was met, accuracy
=94.61%.

activities, transitional activities, and stationary activities. In
the bottom figure there are several misclassifications in the
circled areas. With the heuristic method of the segmentation
refinement module in the sensor fusion function, a whole
segmentation is produced rather than several short ones. The
two circles on the bottom figure show that the neural networks
and the sensor fusion give correct segmentation output and the
errors are caused by the HMM-based recognition algorithm.

VI. Conclusions and Future work

In this paper, we introduced a robot-assisted living system
for elderly people, patients, and the disabled. We proposed a
multi-sensor fusion-based activity recognition algorithm which
combines neural networks and hidden Markov models. The
HMM-based recognition algorithm is applied only to strong
displacement activities. Therefore, the calculation complexity
has been reduced and the efficiency of the algorithm is
enhanced by the fusion of the data from these two sensors. In
the future, we will implement the online recognition algorithm
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Fig. 6. The final results of the activity classification.

and utilize other sensor nodes to improve the accuracy and
increase the variety of activities.
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