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Abstract - This paper is part of an ongoing comprehensive 
study on the interaction between various cache memories 
employed in a typical memory hierarchy in embedded systems. 
The goal of the study is to quantify the effects of various cache 
organizations on the other caches within the hierarchy, and to 
develop an optimal architecture in which each cache is 
customized to perform a specific task. This paper looks at the 
basic effect of a level-one cache on the access patterns for the 
level-two cache. We limit the study to multimedia applications 
in order to obtain useful, meaningful, and understandable 
results at a per-application scale. 

Our results show that the L1 has a significant filtering 
effect on the L2 access pattern, making it highly streamlined. 
Based on the results, we propose small L2 caches with simple 
prefetch buffers for media-processing architectures. 
 

Index Terms— Cache memories, memory hierarchy, 
multimedia, prefetching, embedded systems. 
 

1. INTRODUCTION 
 
The dramatic improvement in CPU performance in the last 
two decades has led to a further increase in the processor-
memory performance gap. Several software and hardware 
enhancements have been proposed and implemented to 
bridge the gap, or at least to reduce its impact on overall 
performance. Despite these efforts, the gap has been 
increasing, and new solutions are being proposed. A simple 
and effective solution is to increase cache size. This 
however, increases total on-chip power dissipation and area, 
which is undesirable, particularly in embedded solutions. 
For example, the StrongARM SA110 uses 43% of its total 
power budget on the cache hierarchy [1]. We assert that the 
relatively specialized nature (as compared to general 
purpose CPUs) and unique thermal, power, and area needs 
of embedded processors makes them ideal candidates for 
novel, highly specialized cache structures. We believe we 
can achieve break-even performance or better with 
specialized cache structures that consume less area, and 

therefore less energy [2].  
This paper takes a step towards understanding the 

nuances of memory hierarchy design in embedded systems 
for a specific subset of applications— multimedia codecs, 
by examining the effect the L1 cache has on the L2. Our 
hypothesis is that the L1 cache creates significant streaming 
activity in the L2 cache by filtering temporal locality in the 
L1. By quantifying this effect, the paper provides data that 
will aid system designers to consider alternative designs for 
the L2.  
 

2. BACKGROUND AND RELATED WORK 
 
Most research on CPU caches has focused on improvements 
to the L1 cache. A number of performance evaluation 
projects have analyzed cache behavior, but no one has 
quantified the effect of the L1 cache on the access patterns 
of the L2. Several researchers have studied CPU cache 
performance for technical [3], [4], commercial [5], and 
multimedia workloads [6],[7]. 

Cantin et al. [4] present cache miss rates for SPEC2000 
applications for a wide variety of cache configurations. 
They present per-application results as well as a number of 
averages. Although a comprehensive study that provides a 
large set of results, it is limited to the L1 cache. 

Talla et al. [6] studied the cache performance of several 
multimedia applications and found that their cache miss 
rates were not higher than those of regular applications. 
They performed studies on the execution characteristics of 
multimedia applications [8] and suggested performance 
optimizations for these applications. Our previous work [7], 
found that multimedia cache performance is not worse than 
that of technical applications, but the study does not 
showcase the filtering effect of the L1. 

With L1 cache miss rates less than 1% [4] for many 
applications, Amdahl's law suggests that we should look 
elsewhere for performance improvement. Some previous 
work on L2 caches shows that the L2 could very well be a 
performance bottleneck. Bhandarkar et al. [9] study the 
performance of the Pentium Pro processor for a number of 
applications. They stress that overall performance loss is 
largely due to L2 cache misses. Wong et al. [10] in their 
work on modifying the L2 replacement policy based on 
temporality, present a strong case for improving the hit rate 
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of L2 caches.  Lin et al. [11] found that half of their system's 
execution time was spent servicing L2 cache misses for 
SPEC2000 applications. Thus, there is strong motivation for 
analyzing and improving the performance of L2 caches.  

Jouppi [12] proposes using a victim cache in which a 
simple fully associative cache is placed after the L1 cache. 
The victim cache swaps data with the L1 cache on 
references that hit in the victim cache but miss in the L1. 
Jouppi also suggests the inclusion of stream buffers that 
prefetch cache lines starting at a cache miss address. The 
prefetched lines are inserted into the buffers, instead of the 
regular cache, to avoid capacity and compulsory misses.  

Gonzáles et al. [13] proposes a split temporal and spatial 
cache to store data with different locality of reference 
characteristics. A locality prediction mechanism determines 
into which cache data is fetched. Although this mechanism 
reduces negative interaction between temporal and spatial 
localities, it may introduce memory fragmentation if a 
program displays only one type of locality. This may waste 
unnecessary area and power in an embedded system, 
especially if both cache segments have to be scaled up in 
size to achieve break-even performance. 

Embedded cache memories have received special 
attention, with increasing efforts to reduce overall cache 
area, and therefore power. The Semiconductor Industry 
Association (SIA) predicts by 2011, a typical SoC design 
will dedicate over 90% of the area to memory [14].  

Panda et al. [15] suggest a scratch pad memory, which is 
a small on chip memory in a separate address space from the 
rest of the memory. The scratch pad memory bypasses any 
data cache, enabling the programmer to use the memory for 
critical data structures.  

 
 

3. EXPERIMENTAL METHODOLOGY 
 
In this section we provide details for the simulators used, the 
applications tested, and the experiments conducted. 
 
3.1. Simulators and Benchmark Programs 
 
We use the DineroIV [16] trace-driven cache simulator and 
Virtutech's Simics [17] full-system execution-driven 
simulator. We obtain traces for Dinero through 
instrumentation using Pin [18], and through Simics to 
simulate a real working environment with multiple 
processes running during the execution of a benchmark 
program. 

Pin is a tool used for profiling applications by inserting 
instrumentation code into program binaries dynamically at 
runtime. Pin generates a trace file consisting of every read, 
write, and instruction fetch made by the application. All 
addresses are virtual. Pin is limited in that it cannot generate 
memory access traces of the entire system. Many embedded 
systems do not run with any supervisor code or operating 
system, so single application traces taken from Pin are still 

useful. To represent systems that do use operating systems, 
we use another simulator, described below. 

Dinero is a trace driven cache simulator that provides a 
variety of cache statistics. It was originally developed at the 
University of Wisconsin as part of the Wisconsin 
Architectural Tool Set. Most cache parameters such as size, 
associativity, block size as well as the replacement policy 
can be varied to simulate different types of caches. 

Virtutech's Simics is a full-system execution-driven 
simulator that can simulate various families of processors. 
We use Simics/x86 with the enterprise target provided with 
the simulator. Enterprise is an x86 architecture running Red 
Hat Linux 2.4. Of the various architectures that can be 
simulated for an enterprise machine we simulate a single-
cpu Pentium 4 machine. Traces from Simics contain 
references not just from the benchmark application but all 
the other processes that might execute during the run-time 
of the application. This provides a significantly larger trace 
file compared to the Pin trace, but this trace more accurately 
portrays actual operating conditions. We believe that the 
effect of switching to other processes, and the resulting 
replacement of cache blocks should be considered while 
analyzing a memory hierarchy. 

We study a set of multimedia applications represented 
by the MediaBench [19] benchmark suite. MediaBench 
consists of complete applications coded in high level 
languages. It includes core algorithms for most widely used 
multimedia applications, all of which are publicly available 
and commonly used on general purpose processors.  
 
 
3.2. Cache Parameters 
 
We simulate a 512 KB, 1 MB and a 2 MB L2 cache, each 8-
way set-associative with the block size varied from 64 bytes 
to 256 bytes. The traces for the L2 are filtered through 32 
KB, 64 KB and 128 KB, 8-way set-associative I and D 
caches with a 32 byte block size. With 9 different L2 
configurations and 3 L1 configurations, most of our results 
are for a relevant subset of the 27 possible combinations. 
 
 3.3. Stream Detection 
 
To measure the filtering effect of the L1, we measure L2 
miss rates, as well as the percentage of total cache blocks 
accessed that are part of a stream. To measure the second 
metric, we designed a stream detector. The detector is 
situated between the L1 and L2 caches and monitors all L2 
accesses. It detects both unit and strided streams. A unit 
stream is defined as having an access pattern L, L+1, L+2, 
L+3… whereas a strided stream contains some distance N 
between accesses such as L, L+N, L+2N, L+3N… Negative 
strides are also detected in the stream detector. 

The detector itself is implemented using a simple FIFO 
miss history table. For every L2 access that is not already 
classified as part of a stream, an entry is placed in the miss 



 3 

history table. For successive accesses, memory references 
are checked against other elements in the miss history table 
to determine if they form a stream (unit or strided, positive 
or negative stride). If accesses do form a stream, and a 
minimum number of accesses, K, have occurred, the 
references are classified as a stream and removed from the 
miss history table. This stream is then stored in another table 
to be used for prefetching. Jouppi [12] provides a detailed 
discussion of unit and strided streams. 

Two metrics determine the performance of this stream 
detector, the depth of the miss history table, and K, the 
minimum number of accesses classified as a stream. 
Ganusov et al. [20] showed that a miss history table depth of 
16 is optimum for tracking streams. Sohoni [21] shows that 
a K value of 4 to 16 is sufficient for stream detection. 
 
3.4. Block Access Frequencies 
 
We also measure the streaming nature in the L2 cache as a 
result of the L1 by measuring the block access frequency in 
the L2. If a unit stream is present in the L2 cache, we expect 
to L2 block accesses equal to the ratio of L2 and L1 block 
size. We measure this by modifying Dinero to maintain a 
block access count for each unique block in the L2. When a 
block is evicted, the count is recorded and reset. We 
measure block access frequencies between 1 and 8 accesses. 

4. RESULTS 
 
Figures 1 and 2 show the percentage of streaming references 
in the L2 accesses. These are filtered through three different 
L1 caches, a 32 KB I and D cache, a 64 KB and a 128 KB. 
All the caches were 8-way set-associative with block sizes 
of 32 bytes. 

The first observation from Figure 1 is the high 
percentage of streams shown by almost all applications, 
with the exception of pegwit. The average stream 
percentages are 31.96%, 35.03% and 44.47% when filtered 
by the 32 KB, 64 KB and 128 KB cache respectively. 

The second observation from the figure is the increase 
in the percent streaming with increase in the size of the 
filtering cache. As the L1 captures more and more of the 
temporal accesses, the remaining accesses (misses from the 
L1 to the L2) tend to be more streaming in nature. Thus, 
with larger and more effective L1 caches, we can expect 
fewer accesses to the L2, and these will predominantly be of 
a streaming nature. 

From the plot for the Simics trace (Figure 2), we see 
even higher percentages of streaming references. The 
average stream percentages are 46.72%, 50.94% and 
55.42% when filtered by the 32 KB, 64 KB and 128 KB 
cache respectively. These results are particularly important 
because this is what happens on a real system, under actual 

 
Figure 1. Streaming References to the L2: Pin Traces. L1 Cache Size Varied from 32 KB to 128 KB. 

 
Figure 2. Streaming References to the L2: Simics Traces. L1 Cache Size Varied from 32 KB to 128 KB. 
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operating conditions. Multimedia applications tend to have 
streaming patterns, and we expected that the addition of 
references from non-streaming processes and idle processes 
would lower the overall streaming percentage for the Simics 
traces compared to the Pin traces. However, because other 
processes may have evicted data from the L1, some data 
will be brought back in, creating additional streaming 
accesses at the L2. These results further support our 
previous observation that the L2 sees a high number of 
streaming references due to the filtering effect of the L1. 

Figures 3 and 4 show the percentage miss rates for local 
L2 misses for 9 different configurations. It is clear that the 
block size has a significant impact on cache performance for 
the mediabench applications. Due to their small memory 
footprint, the miss rates are almost identical in the Pin trace. 
However, for the Simics trace, we see the effect of other 
processes and a noticeable increase in the miss rate with 
decrease in cache size. 

Based on our prior observations on the streaming nature 
of L2 accesses, we expect to see a decrease in miss rates 
with an increase in block size. This is because a larger block 
size effectively prefetches streaming data for unit stride and  
small stride streams. This leads us to believe that a smaller 
L2 cache with a large block size or a simple stream-based 
prefetch mechanism will perform well for media-processing 

architectures. For example, for the Simics trace that includes 
references to other processes the miss rate for the 512 KB 
cache with a 256 byte block size is 8.15% compared to 
13.83% for the 2 MB cache with a 64 byte block size. 

The most convincing evidence of the streaming nature 
in the L2 cache as a result of the L1 is the access frequency 
of blocks in the L2 cache. For example, suppose we have a 
L1 cache with a 32 byte block size and a L2 cache with a 64 
byte block size. If the L1 creates a stream in the L2, either 
by filtering out temporal locality, or by the inherent 
streaming nature of the process, we expect to see only 2 
accesses to a given block in the L2 cache, since each L2 
block consists of 2 L1 blocks.  This assumes a unit stride in 
the stream. Figures 5 and 6 show the block access 
frequencies from 1 to 8 in the L2 cache for adpcmencode, a 
voice encoding application, for Pin and Simics traces, 
respectively. The L1 cache has a block size of 32 bytes, and 
the L2 cache has a block size varied from 64 to 256 bytes. In 
each block size configuration, the highest block access 
frequency occurs at the ratio of L2 to L1 block size. This 
indicates that a significant amount of unit streaming is 
occurring in the L2 cache as a result of filtering in the L1 
cache. For example, over 40% of all L2 accesses with a 64 
byte block size in the Simics traces access a block only 
twice. This observation is similar in each of the applications 
used in this experiment.  

This observation is important in determining the 
importance of the L2 cache. If most accesses belong to 
streams, and are only accessed by those streams, which is 
indicated here 

 
5. CONCLUSIONS 

 
This paper provides quantification for the filtering effect of 
L1 caches on the L2 access patterns. Through an actual 
count of the number of references detected as part of a 
stream and the variation of these counts with the size of the 
L1 cache through which they are filtered, we show that the 
L1 has a significant effect on L2 access patterns. This is 
illustrated through the direct measurement of unit and 
strided streams in the L2 cache and through block access 
frequency statistics that indicate the degree of streaming 
activity in the L2 cache caused by the L1 cache. We show 
that in some cases, nearly 80% of all L2 cache accesses 
belong to an easily identifiable stream. Furthermore, 
references in the L2 generally access a block equal to the 
ratio of L2 and L1 block size. This is indicative of the L1 
cache creating streaming activity in the L2 by filtering out 
temporal activity.  

We believe that alternate models for the memory 
hierarchy should be considered based on the quantification 
of the filtering effect. One option is to reduce the L2 cache 
size and increase its block size. Another option would be to 
assign filtered prefetch buffers and completely removing the 
L2 cache as suggested by Palacharla and Kessler [22]. 
While removing the L2 cache is not practical for general 

 
Figure 3. Miss Rates for the L2: Pin Traces 

 
Figure 4. Miss Rates for the L2: Simics Traces 
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purpose systems, it may indeed be a good solution for an 
embedded systems domain.  

With novel prefetching schemes for streams [23],[24], 
media-processing embedded cores will have excellent 
memory performance even with much smaller L2 caches 
than those of current commercial general-purpose cores. 
Smaller L2 caches will have lower latency, further 
improving overall memory system performance.  
 

6. FUTURE WORK 
 
This paper is the first step in a wider study of novel cache 
architectures in embedded systems. We plan to continue the 
experiment detailed here on a larger number of application 
domains for embedded systems, including office 
productivity, networking, security, and telecommunication 
applications. Benchmark suites already exist to facilitate in 
this study [25]. We expect to see less overall streaming 

activity in other application domains, which may justify a 
hybrid cache architecture to accommodate the widest array 
of application behavior.  

We also plan to explore additional cache architectures, 
including those designed to exploit the interactions between 
an embedded operating system and user applications. As 
embedded devices become more complex, developers are 
turning to more general purpose solutions such as embedded 
Linux devices. This trend creates new avenues of embedded 
memory research. One possible solution is to include a 
supervisor cache lateral to the L2 cache. When the processor 
is in supervisor mode, all cache writes occur in the 
supervisor cache, to avoid interference with the user data 
stream. This mechanism could help prevent any interference 
in critical user process locality, while still providing the 
benefits of caching to the operating system. 

 
 

 
Figure 5. Block access frequencies in the L2: Pin Traces. The greatest block access frequencies occur when the block access 

count equals the ratio of L2 block size and L1 block size.   
 

 
Figure 6. Block access frequencies in the L2: Simics Traces.  
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