
 1

Quantifying the Cache Filtering Effect for
Multimedia Applications in Embedded Systems

David Fritz, Wira Mulia, Sohum Sohoni

Abstract - This paper is part of an ongoing comprehensive
study on the interaction between various cache memories
employed in a typical memory hierarchy in embedded systems.
The goal of the study is to quantify the effects of various cache
organizations on the other caches within the hierarchy, and to
develop an optimal architecture in which each cache is
customized to perform a specific task. This paper looks at the
basic effect of a level-one cache on the access patterns for the
level-two cache. We limit the study to multimedia applications
in order to obtain useful, meaningful, and understandable
results at a per-application scale.

Our results show that the L1 has a significant filtering
effect on the L2 access pattern, making it highly streamlined.
Based on the results, we propose small L2 caches with simple
prefetch buffers for media-processing architectures.

Index Terms— Cache memories, memory hierarchy,
multimedia, prefetching, embedded systems.

1. INTRODUCTION

The dramatic improvement in CPU performance in the last
two decades has led to a further increase in the processor-
memory performance gap. Several software and hardware
enhancements have been proposed and implemented to
bridge the gap, or at least to reduce its impact on overall
performance. Despite these efforts, the gap has been
increasing, and new solutions are being proposed. A simple
and effective solution is to increase cache size. This
however, increases total on-chip power dissipation and area,
which is undesirable, particularly in embedded solutions.
For example, the StrongARM SA110 uses 43% of its total
power budget on the cache hierarchy [1]. We assert that the
relatively specialized nature (as compared to general
purpose CPUs) and unique thermal, power, and area needs
of embedded processors makes them ideal candidates for
novel, highly specialized cache structures. We believe we
can achieve break-even performance or better with
specialized cache structures that consume less area, and

therefore less energy [2].
This paper takes a step towards understanding the

nuances of memory hierarchy design in embedded systems
for a specific subset of applications— multimedia codecs,
by examining the effect the L1 cache has on the L2. Our
hypothesis is that the L1 cache creates significant streaming
activity in the L2 cache by filtering temporal locality in the
L1. By quantifying this effect, the paper provides data that
will aid system designers to consider alternative designs for
the L2.

2. BACKGROUND AND RELATED WORK

Most research on CPU caches has focused on improvements
to the L1 cache. A number of performance evaluation
projects have analyzed cache behavior, but no one has
quantified the effect of the L1 cache on the access patterns
of the L2. Several researchers have studied CPU cache
performance for technical [3], [4], commercial [5], and
multimedia workloads [6],[7].

Cantin et al. [4] present cache miss rates for SPEC2000
applications for a wide variety of cache configurations.
They present per-application results as well as a number of
averages. Although a comprehensive study that provides a
large set of results, it is limited to the L1 cache.

Talla et al. [6] studied the cache performance of several
multimedia applications and found that their cache miss
rates were not higher than those of regular applications.
They performed studies on the execution characteristics of
multimedia applications [8] and suggested performance
optimizations for these applications. Our previous work [7],
found that multimedia cache performance is not worse than
that of technical applications, but the study does not
showcase the filtering effect of the L1.

With L1 cache miss rates less than 1% [4] for many
applications, Amdahl's law suggests that we should look
elsewhere for performance improvement. Some previous
work on L2 caches shows that the L2 could very well be a
performance bottleneck. Bhandarkar et al. [9] study the
performance of the Pentium Pro processor for a number of
applications. They stress that overall performance loss is
largely due to L2 cache misses. Wong et al. [10] in their
work on modifying the L2 replacement policy based on
temporality, present a strong case for improving the hit rate

D. Fritz is with Oklahoma State University, 202 Engineering South,
OSU, Stillwater, OK 74074 USA. (email: david.fritz@okstate.edu)

W. Mulia is with Oklahoma State University, 202 Engineering South,
OSU, Stillwater, OK 74074 USA. (email: wira.mulia@okstate.edu)

S. Sohoni is with Oklahoma State University, 202 Engineering South,
OSU, Stillwater, OK 74074 USA. (phone: 405-744-8040; email:
sohum.sohoni@okstate.edu)

 2

of L2 caches. Lin et al. [11] found that half of their system's
execution time was spent servicing L2 cache misses for
SPEC2000 applications. Thus, there is strong motivation for
analyzing and improving the performance of L2 caches.

Jouppi [12] proposes using a victim cache in which a
simple fully associative cache is placed after the L1 cache.
The victim cache swaps data with the L1 cache on
references that hit in the victim cache but miss in the L1.
Jouppi also suggests the inclusion of stream buffers that
prefetch cache lines starting at a cache miss address. The
prefetched lines are inserted into the buffers, instead of the
regular cache, to avoid capacity and compulsory misses.

Gonzáles et al. [13] proposes a split temporal and spatial
cache to store data with different locality of reference
characteristics. A locality prediction mechanism determines
into which cache data is fetched. Although this mechanism
reduces negative interaction between temporal and spatial
localities, it may introduce memory fragmentation if a
program displays only one type of locality. This may waste
unnecessary area and power in an embedded system,
especially if both cache segments have to be scaled up in
size to achieve break-even performance.

Embedded cache memories have received special
attention, with increasing efforts to reduce overall cache
area, and therefore power. The Semiconductor Industry
Association (SIA) predicts by 2011, a typical SoC design
will dedicate over 90% of the area to memory [14].

Panda et al. [15] suggest a scratch pad memory, which is
a small on chip memory in a separate address space from the
rest of the memory. The scratch pad memory bypasses any
data cache, enabling the programmer to use the memory for
critical data structures.

3. EXPERIMENTAL METHODOLOGY

In this section we provide details for the simulators used, the
applications tested, and the experiments conducted.

3.1. Simulators and Benchmark Programs

We use the DineroIV [16] trace-driven cache simulator and
Virtutech's Simics [17] full-system execution-driven
simulator. We obtain traces for Dinero through
instrumentation using Pin [18], and through Simics to
simulate a real working environment with multiple
processes running during the execution of a benchmark
program.

Pin is a tool used for profiling applications by inserting
instrumentation code into program binaries dynamically at
runtime. Pin generates a trace file consisting of every read,
write, and instruction fetch made by the application. All
addresses are virtual. Pin is limited in that it cannot generate
memory access traces of the entire system. Many embedded
systems do not run with any supervisor code or operating
system, so single application traces taken from Pin are still

useful. To represent systems that do use operating systems,
we use another simulator, described below.

Dinero is a trace driven cache simulator that provides a
variety of cache statistics. It was originally developed at the
University of Wisconsin as part of the Wisconsin
Architectural Tool Set. Most cache parameters such as size,
associativity, block size as well as the replacement policy
can be varied to simulate different types of caches.

Virtutech's Simics is a full-system execution-driven
simulator that can simulate various families of processors.
We use Simics/x86 with the enterprise target provided with
the simulator. Enterprise is an x86 architecture running Red
Hat Linux 2.4. Of the various architectures that can be
simulated for an enterprise machine we simulate a single-
cpu Pentium 4 machine. Traces from Simics contain
references not just from the benchmark application but all
the other processes that might execute during the run-time
of the application. This provides a significantly larger trace
file compared to the Pin trace, but this trace more accurately
portrays actual operating conditions. We believe that the
effect of switching to other processes, and the resulting
replacement of cache blocks should be considered while
analyzing a memory hierarchy.

We study a set of multimedia applications represented
by the MediaBench [19] benchmark suite. MediaBench
consists of complete applications coded in high level
languages. It includes core algorithms for most widely used
multimedia applications, all of which are publicly available
and commonly used on general purpose processors.

3.2. Cache Parameters

We simulate a 512 KB, 1 MB and a 2 MB L2 cache, each 8-
way set-associative with the block size varied from 64 bytes
to 256 bytes. The traces for the L2 are filtered through 32
KB, 64 KB and 128 KB, 8-way set-associative I and D
caches with a 32 byte block size. With 9 different L2
configurations and 3 L1 configurations, most of our results
are for a relevant subset of the 27 possible combinations.

 3.3. Stream Detection

To measure the filtering effect of the L1, we measure L2
miss rates, as well as the percentage of total cache blocks
accessed that are part of a stream. To measure the second
metric, we designed a stream detector. The detector is
situated between the L1 and L2 caches and monitors all L2
accesses. It detects both unit and strided streams. A unit
stream is defined as having an access pattern L, L+1, L+2,
L+3… whereas a strided stream contains some distance N
between accesses such as L, L+N, L+2N, L+3N… Negative
strides are also detected in the stream detector.

The detector itself is implemented using a simple FIFO
miss history table. For every L2 access that is not already
classified as part of a stream, an entry is placed in the miss

 3

history table. For successive accesses, memory references
are checked against other elements in the miss history table
to determine if they form a stream (unit or strided, positive
or negative stride). If accesses do form a stream, and a
minimum number of accesses, K, have occurred, the
references are classified as a stream and removed from the
miss history table. This stream is then stored in another table
to be used for prefetching. Jouppi [12] provides a detailed
discussion of unit and strided streams.

Two metrics determine the performance of this stream
detector, the depth of the miss history table, and K, the
minimum number of accesses classified as a stream.
Ganusov et al. [20] showed that a miss history table depth of
16 is optimum for tracking streams. Sohoni [21] shows that
a K value of 4 to 16 is sufficient for stream detection.

3.4. Block Access Frequencies

We also measure the streaming nature in the L2 cache as a
result of the L1 by measuring the block access frequency in
the L2. If a unit stream is present in the L2 cache, we expect
to L2 block accesses equal to the ratio of L2 and L1 block
size. We measure this by modifying Dinero to maintain a
block access count for each unique block in the L2. When a
block is evicted, the count is recorded and reset. We
measure block access frequencies between 1 and 8 accesses.

4. RESULTS

Figures 1 and 2 show the percentage of streaming references
in the L2 accesses. These are filtered through three different
L1 caches, a 32 KB I and D cache, a 64 KB and a 128 KB.
All the caches were 8-way set-associative with block sizes
of 32 bytes.

The first observation from Figure 1 is the high
percentage of streams shown by almost all applications,
with the exception of pegwit. The average stream
percentages are 31.96%, 35.03% and 44.47% when filtered
by the 32 KB, 64 KB and 128 KB cache respectively.

The second observation from the figure is the increase
in the percent streaming with increase in the size of the
filtering cache. As the L1 captures more and more of the
temporal accesses, the remaining accesses (misses from the
L1 to the L2) tend to be more streaming in nature. Thus,
with larger and more effective L1 caches, we can expect
fewer accesses to the L2, and these will predominantly be of
a streaming nature.

From the plot for the Simics trace (Figure 2), we see
even higher percentages of streaming references. The
average stream percentages are 46.72%, 50.94% and
55.42% when filtered by the 32 KB, 64 KB and 128 KB
cache respectively. These results are particularly important
because this is what happens on a real system, under actual

Figure 1. Streaming References to the L2: Pin Traces. L1 Cache Size Varied from 32 KB to 128 KB.

Figure 2. Streaming References to the L2: Simics Traces. L1 Cache Size Varied from 32 KB to 128 KB.

 4

operating conditions. Multimedia applications tend to have
streaming patterns, and we expected that the addition of
references from non-streaming processes and idle processes
would lower the overall streaming percentage for the Simics
traces compared to the Pin traces. However, because other
processes may have evicted data from the L1, some data
will be brought back in, creating additional streaming
accesses at the L2. These results further support our
previous observation that the L2 sees a high number of
streaming references due to the filtering effect of the L1.

Figures 3 and 4 show the percentage miss rates for local
L2 misses for 9 different configurations. It is clear that the
block size has a significant impact on cache performance for
the mediabench applications. Due to their small memory
footprint, the miss rates are almost identical in the Pin trace.
However, for the Simics trace, we see the effect of other
processes and a noticeable increase in the miss rate with
decrease in cache size.

Based on our prior observations on the streaming nature
of L2 accesses, we expect to see a decrease in miss rates
with an increase in block size. This is because a larger block
size effectively prefetches streaming data for unit stride and
small stride streams. This leads us to believe that a smaller
L2 cache with a large block size or a simple stream-based
prefetch mechanism will perform well for media-processing

architectures. For example, for the Simics trace that includes
references to other processes the miss rate for the 512 KB
cache with a 256 byte block size is 8.15% compared to
13.83% for the 2 MB cache with a 64 byte block size.

The most convincing evidence of the streaming nature
in the L2 cache as a result of the L1 is the access frequency
of blocks in the L2 cache. For example, suppose we have a
L1 cache with a 32 byte block size and a L2 cache with a 64
byte block size. If the L1 creates a stream in the L2, either
by filtering out temporal locality, or by the inherent
streaming nature of the process, we expect to see only 2
accesses to a given block in the L2 cache, since each L2
block consists of 2 L1 blocks. This assumes a unit stride in
the stream. Figures 5 and 6 show the block access
frequencies from 1 to 8 in the L2 cache for adpcmencode, a
voice encoding application, for Pin and Simics traces,
respectively. The L1 cache has a block size of 32 bytes, and
the L2 cache has a block size varied from 64 to 256 bytes. In
each block size configuration, the highest block access
frequency occurs at the ratio of L2 to L1 block size. This
indicates that a significant amount of unit streaming is
occurring in the L2 cache as a result of filtering in the L1
cache. For example, over 40% of all L2 accesses with a 64
byte block size in the Simics traces access a block only
twice. This observation is similar in each of the applications
used in this experiment.

This observation is important in determining the
importance of the L2 cache. If most accesses belong to
streams, and are only accessed by those streams, which is
indicated here

5. CONCLUSIONS

This paper provides quantification for the filtering effect of
L1 caches on the L2 access patterns. Through an actual
count of the number of references detected as part of a
stream and the variation of these counts with the size of the
L1 cache through which they are filtered, we show that the
L1 has a significant effect on L2 access patterns. This is
illustrated through the direct measurement of unit and
strided streams in the L2 cache and through block access
frequency statistics that indicate the degree of streaming
activity in the L2 cache caused by the L1 cache. We show
that in some cases, nearly 80% of all L2 cache accesses
belong to an easily identifiable stream. Furthermore,
references in the L2 generally access a block equal to the
ratio of L2 and L1 block size. This is indicative of the L1
cache creating streaming activity in the L2 by filtering out
temporal activity.

We believe that alternate models for the memory
hierarchy should be considered based on the quantification
of the filtering effect. One option is to reduce the L2 cache
size and increase its block size. Another option would be to
assign filtered prefetch buffers and completely removing the
L2 cache as suggested by Palacharla and Kessler [22].
While removing the L2 cache is not practical for general

Figure 3. Miss Rates for the L2: Pin Traces

Figure 4. Miss Rates for the L2: Simics Traces

0%

5%

10%

15%

20%

25%

30%

M
is

s
R

at
e

0%

5%

10%

15%

20%

25%

30%

M
is

s
R

at
e

 5

purpose systems, it may indeed be a good solution for an
embedded systems domain.

With novel prefetching schemes for streams [23],[24],
media-processing embedded cores will have excellent
memory performance even with much smaller L2 caches
than those of current commercial general-purpose cores.
Smaller L2 caches will have lower latency, further
improving overall memory system performance.

6. FUTURE WORK

This paper is the first step in a wider study of novel cache
architectures in embedded systems. We plan to continue the
experiment detailed here on a larger number of application
domains for embedded systems, including office
productivity, networking, security, and telecommunication
applications. Benchmark suites already exist to facilitate in
this study [25]. We expect to see less overall streaming

activity in other application domains, which may justify a
hybrid cache architecture to accommodate the widest array
of application behavior.

We also plan to explore additional cache architectures,
including those designed to exploit the interactions between
an embedded operating system and user applications. As
embedded devices become more complex, developers are
turning to more general purpose solutions such as embedded
Linux devices. This trend creates new avenues of embedded
memory research. One possible solution is to include a
supervisor cache lateral to the L2 cache. When the processor
is in supervisor mode, all cache writes occur in the
supervisor cache, to avoid interference with the user data
stream. This mechanism could help prevent any interference
in critical user process locality, while still providing the
benefits of caching to the operating system.

Figure 5. Block access frequencies in the L2: Pin Traces. The greatest block access frequencies occur when the block access

count equals the ratio of L2 block size and L1 block size.

Figure 6. Block access frequencies in the L2: Simics Traces.

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y

Block Access Count

64 byte

128 byte

256 byte

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y

Block Access Count

64 byte

128 byte

256 byte

 6

7. REFERENCES

[1] S. Santhanam, “StrongARM SA110 – A 160MHz 32b 0.5W

CMOS ARM Architecture,” Hot Chips 8: A Symposium on
High-Performance Chips, Aug. 1996.

[2] T. Ishihara and H. Yasuura, “A power reduction technique
with object code merging for application specific embedded
processors,” Proc. Of Design, Automation and Test in Europe
Conference 2000, pp. 617-623, Mar. 2000.

[3] S. Sair and M. Charney, “Memory Behavior of the spec2000
Benchmark Suite,” technical report, IBM T.J. Watson
Research Center, October 2000.

[4] J. Cantin and M. Hill, “Cache Performance for Selected spec
CPU2000 Benchmarks,” SIGARCH Computer Architecture
News, ACM, pp. 13-18, September 2001.

[5] L. Barroso, K. Gharachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads,”
Proceedings of the 25th International Conference on Very
Large Databases, IEEE Computer Society, (Barcelona,
Spain), pp. 3-14, 1998

[6] D. Talla and L. K. John, “Execution Characteristics of
Multimedia Applications on a Pentium II Processor,”
Proceedings of the 1999 IEEE International Performance,
Computing, and Communications Conference, (Phoenix,
Arizona, USA), pp. 516-524, February 2000.

[7] Z. Xu, S. Sohoni, R. Min, and Y. Hu, “An Analysis of the
Cache Performance of Multimedia Applications,” IEEE
Transactions on Computers, IEEE Computer Society, vol. 53,
no. 1, pp. 20-38, January 2004.

[8] D. Talla, L. John, and D. Burger, “Bottlenecks in Multimedia
Processing with SIMD Style Extensions and Architectural
Enhancements," IEEE Transactions on Computers, IEEE
Computer Society, vol. 52, no. 8, pp. 1015-1031, August
2003.

[9] D. Bhandarkar and J. Ding, “Performance Characterization of
the Pentium Pro Processor,” Proceedings of the 3rd
International Symposium on High Performance Computer
Architecture, IEEE Computer Society, (San Antonio, Texas),
pp. 288-297, February 1997.

[10] W.Wong and J.-L. Baer, “Modified LRU Policies for
Improving Second-Level Cache Behavior,” Proceedings of
the 6th International Symposium on High-Performance
Computer Architecture, (Toulouse, France), pp. 49-60,
January 2000.

[11] W. Lin, S. Reinhardt, and D. Burger, “Designing a Modern
Memory Hierarchy with Hardware Prefetching,” IEEE
Transactions on Computers Special Issue on Memory
Systems, IEEE Computer Society, vol. 50, no. 11, pp. 1202-
1218, November 2001.

[12] N. P. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,” Proceedings of the 17th Annual
International Symposium on Computer Architecture, ACM,
(Seattle, Washington, USA), pp 364-373, 1990.

[13] A. González, C. Aliagas, M. Valero, “A data-cache with
multiple caching strategies tuned to different types of
locality,” International Conference on Supercomputing, July,
1995.

[14] Semiconductor Industry Association, “International
Technology Roadmap for Semiconductors: Design,” 2000
Update.

[15] P. Panda, N. Dutt, A. Nicolau, “On-chip vs. off-chip memory:
The data partitioning problem in embedded processor-based
systems,” ACM Trans. on Design Automation of Electronic
Systems, July, 2000.

[16] J. Edler and M. Hill, “DineroIV Trace-Driven Uniprocessor
Cache Simulator.”

[17] Virtutech. https://www.simics.net/.
[18] C.-K Luk, R.Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation,” Programming Language Design and
Implementation, ACM, (Chicago, Illinois, USA), pp. 190-200,
June 2005.

[19] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” Proceedings of
the 30th Annual International Symposium on
Microarchitecture, IEEE Computer Society, (Research
Triangle Park, North Carolina, USA), pp. 330-335, December
1-3, 2007.

[20] I. Ganusov and M. Burtscher, “On the Importance of
Optimizing and Configuration of Stream Prefetchers,” 3rd
Annual ACM SIGPLAN Workshop on Memory Systems
Performance, ACM, (Chicago, Illinois, USA), pp. 54-61, June
2005.

[21] S. Sohoni, “Improving L2 Cache Performance through
Stream-Directed Optimizations,” Tech. Report, University of
Cincinnati, June 2003.

[22] S. Palacharla and R. E. Kessler, “Evaluating Stream Buffers
as a Secondary Cache Replacement,” Proceedings of the 21st
Annual International Symposium on Computer Architecture,
IEEE Computer Society Press, (Chicago, Illinois, USA), pp.
24-33, 1994.

[23] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G.
Abraham, “Effective Stream-Based and Execution-Based
Data Prefetching,” Proceedings of the 18th Annual
International Conference on Supercomputing, ACM, (Malo,
France), pp. 1-11, 2004.

[24] C. Zhang and S. A. McKee, “Hardware-Only Stream
Prefetching and Dynamic Access Ordering,” Proceedings of
the 14th International Conference on Supercomputing, ACM,
(Santa Fe, New Mexico, USA), pp. 167-175, ACM, 2000.

[25] M.R. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” Proc. 4th IEEE
Workshop on Workload Characterization, pp. 3-14, Dec.
2001.

