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Abstract— Tracking and observing multiple dynamic targets
is an important task in mobile sensor networks. This paper
presents a novel approach to the problem of sensor split-
ting/merging for mobile sensor networks to track and observe
multiple targets in a dynamic fashion. In this approach, we
propose a seed growing graph partition (SGGP) algorithm to
solve the splitting/merging problem. Furthermore, during the
process of tracking, collision avoidance and velocity matching
among mobile sensors are guaranteed. To demonstrate the
benefit of the SGGP algorithm in term of the total energy
and time consumption when sensors split, we compare the
SGGP with a random selection (RS) algorithm. Numerical
experimental tests validate our theoretical results.

Keywords: Flocking control, Multiple targets tracking, Mo-
bile sensor network, Graph partitioning.

I. I NTRODUCTION

A. Motivation

Sensor networks, especially mobile sensor networks [1]
have been extensively studied in recent years. Mobile sensor
networks have several advantages over stationary sensor
networks such as the adaptation to environmental changes
and reconfigurability for better sensing performance. A main
issue for multiple mobile sensors to track a moving target is
that these sensors have to move together without collision
among them during tracking, which requires the use of co-
operative control methods. One of these methods is flocking
control [2]. We know that flocking is a phenomenon in which
a number of mobile agents move together and interact with
each other while ensuring no collision, velocity matching,
and flock centering [3]. In nature, schools of fish, birds, ants,
and bees, etc. demonstrate the phenomena of flocking. The
problem of flocking has been studied for many years. It has
attracted many researchers in physics, mathematics, biology,
and especially in control science in recent years [2], [4], [5],
[6], [7], [8], [9], [10], [11].

Another issue in a mobile sensor network is how to track
multiple targets simultaneously in a dynamic fashion. This
requires that some sensors should split from the existing
formation(s) to track new targets while causing the least
disturbance to other sensors. Therefore it raises the question
of which sensors should split from the existing formation(s)
so that the total energy and time consumption are minimized.
In addition, when some targets disappear the sensors which
are tracking these targets should rejoin (merge) with the
existing groups that are still tracking targets.
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In this paper, we present a novel approach to this problem
of sensor splitting/merging. In our approach, aseed growing
graph partition (SGGP) algorithm is proposed to solve the
problem of splitting/merging maneuvers. To demonstrate the
benefit of the SGGP in term of total energy and time
consumption when sensors split, we compare the SGGP
algorithm with a random selection (RS) algorithm.

B. Literature review

In this section, we review existing works in flocking
control and network partitioning which are related to our
approach.

Flocking control has been studied by many researchers.
Wang and Gu [7] presented a survey of recent research
achievements in robot flocking. Their paper gave an overview
of the related basic knowledge of graph theory, potential
function, network communication and system stability anal-
ysis. In [2], a theoretical framework for design and analy-
sis of distributed flocking algorithms was proposed. These
algorithms solved the flocking control in the absence and
presence of obstacles. An extension of the flocking control
algorithms in [2], flocking of agents with a virtual leader in
the case of a minority of informed agents and in the case of
varying velocity of virtual leader, was presented in [4] and
[5]. Shi and Wang [6] investigated the dynamic properties
of mobile agents for the case where the state of the virtual
leader is time varying and the topology of the neighboring
relations between agents is dynamic. Tanneret al. [8], [9]
studied the stability properties of a system of multiple mobile
agents with double integrator dynamics in the case of fixed
and dynamic topologies. In addition, the experimental imple-
mentation of flocking algorithms proposed in [8] and [9] on
wheeled mobile robots was presented in [10]. Gervasi and
Prencipe [11] studied the distributed coordination and control
of a set of asynchronous, anonymous, memoryless mobile
vehicles in the case of no communication among the vehicles.
In particular, their paper analyzed the problem of flocking in
a certain pattern and following a designated leader vehicle,
while maintaining the pattern. Olfati-Saber [12] developed
a distributed flocking algorithm for mobile sensor networks
to track a moving target. In his paper, an extension of a
distributed Kalman filtering algorithm was used to estimate
the target’s position. In general, the published literature has
focused on single target tracking. Flocking control of mobile
sensor networks for multiple targets tracking is very limited.

Sensor network partitioning has received much attention
in recent years. Bettstetter [13] gave equations for the cluster
density and cluster order of hemogeneously distributed nodes
running the distributed mobile adaptive clustering algorithm.
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Virrankoski and Savvides [14] proposed a topology adaptive
spatial clustering (TASC) for sensor networks. TASC is a
distributed algorithm to partition the network into subgroups
(clusters) without the knowledge of the number of clusters,
cluster size and node coordinates. Karger and Stein [15]
presented an approach to find the minimum cuts in undirected
graphs. This approach is based on the fundamental principle
that the edges in a graph’s minimum cut form an extremely
small fraction of the graph’s edges. To do that they gave
a randomized, strongly polynomial algorithm that finds the
minimum cut in an arbitrarily weighted undirected graph
with high probability.Derbel and Mosbah [16] proposed a
linear time distributed algorithm for decomposing a graph
into a disjointed set of clusters. This algorithm is parallel
in its nature. In [17], [18], Goebelset al. presented a
neighborhood-based strategy, a border switch strategy, and an
exchange target strategy for the partitioning of large sets of
agents onto multiple groups. In summary, the previous works
solved the graph partitioning problem in both centralized and
decentralized fashions, but in the decentralized way they are
usually based on the density of node’s distribution. Hence
the number of nodes in each sub-group is different.

The rest of this paper is organized as follows. In Section
II we present the flocking control algorithm for single target
tracking and observing. Section III presents the dynamic
multiple targets tracking and observing algorithm. Section
IV presents the experimental test results. Finally, Section V
concludes this paper.

II. FLOCKING CONTROL FOR SINGLE TARGET TRACKING

AND OBSERVING

To describe a dynamic topology of flocks or swarms we
consider a dynamic graphG(ϑ,E) consisting of a vertex set
ϑ = {1,2...,n} and an edge setE ⊆{(i, j) : i, j ∈ ϑ, i , j}. In
this topology each vertex denotes one member of the flock,
and each edge denotes the communication link between two
members.

Let qi , pi ∈ Rm (m = 2,3) be the position and velocity
of node i, respectively. We know that during the motion
of sensors, the relative distance between them may change,
hence the neighbors of each sensor also change. Therefore,
we can define a set of neighbors of sensori at time t as
follows:

Ni(t) =
{

j ∈ ϑ : ‖q j −qi‖ ≤ r, ϑ = {1,2, ...,n} , i , j
}

(1)

herer is an interaction range (radius of neighborhood circle
in the case of two dimensions,m= 2, or radius of neighbor-
hood sphere in the case of three dimensions,m= 3), and‖.‖
is the Euclidean distance.

Now, we considern sensors moving in anm dimensional
Euclidean space. We address the motion control problem
for a group of sensors with the objective of dynamic target
tracking. In this problem we assume that each sensor has
a limited communication range to allow it to communicate
with others and a large enough sensing range to make it sense
the target. We also assume that each sensor is equipped with

sonar or laser sensor that allows it to estimate the position
and velocity of the target.

The dynamic equation of each sensor is described as
follows:

{

q̇i = pi

ṗi = ui , i = 1,2, ...,n.
(2)

The geometry of flocks is modeled by anα-lattice [2] that
has the following condition:

‖qi −q j‖ = d, j ∈ Ni (3)

hered is a positive constant indicating the distance between
sensori and its neighborj.

The configuration which approximately satisfies the condi-
tion (3) is called a quasiα-lattice, i.e.(‖qi −q j‖−d)2 < δ2,
with δ << d.

Firstly, based on Olfati-Saber’s flocking algorithm with
obstacle avoidance [2] we design a flocking control algorithm
with a dynamicγ-agent. In this scenario, the dynamicγ-agent
is considered as a moving target.

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt). (4)

In this control protocol, the pair(qmt, pmt) is the position
and velocity of the moving target respectively. The constants
are chosen ascα

1 < cmt
1 < cβ

1, and cν
2 = 2

√

cν
1. Here cν

η
are positive constants for∀η = 1,2 and ν = α,β,mt. The
σ− norm, ‖.‖σ, of a vector is a mapRm =⇒ R+ defined
as ‖z‖σ = 1/ε[

√

1+ ε‖z‖2 − 1]. φα(z) and φβ(z) are the
action functions to control the attractive or repulsive forces
between sensori and its neighbor j, and the repulsive
force between sensori and its obstaclek, respectively.
ni j and n̂i,k are the vectors along the line to connect the
pair (qi, q j), and the pair(q̂i,k, qi), respectively.ai j (q)
and bi,k(q) are adjacency matrices. ˆqi,k, p̂i,k are the posi-
tion and velocity of sensori projecting on the obstaclek,
respectively. The set ofα neighbors at timet, Nα

i (t), is
defined the same asNi(t) in (1), and the set ofβ neighbors
(virtual neighbors) of sensori at time t with k obstacles
is Nβ

i (t) =
{

k∈ ϑβ : ‖q̂i,k−qi‖ ≤ r
′
,ϑβ = {1,2, ...,k}

}

with

r
′

being selected to be bigger thanr, in our simulations
r
′
= 1.2∗ r. More details of the these terms, please see [2].
The dynamic target is defined as follows:

{

q̇mt = pmt

ṗmt = ft (qmt, pmt).
(5)

In the control protocol (4), the first two terms are used
to control the formation (collision avoidance and velocity
matching among sensors). The third and fourth terms are
used to allow sensors to avoid obstacles. The last term
(negative feedback) is used for target tracking. If it is absent
the control will lead to the fragmentation of the sensor
network [2].
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III. D YNAMIC MULTIPLE TARGETS TRACKING AND

OBSERVING

In many surveillance applications the sensor networks
have to deal with the dynamic situation of targets appearing
and disappearing in the field. In the following subsections
we first address the problem of sensor network partitioning
and then discuss multiple dynamic targets tracking.

A. Sensor network partitioning

To deal with a new emerging target, the sensor network
should automatically decompose into equal sub-groups and
then each sub-group will be assigned to track one target.
For example, considerM targets existing at timet and
M sensor groups(G1,G2, ...,GM) which are tracking these
targets (each group has aboutn/M sensors). If the(M +1)th
target appears then n

M+1 sensors should split off fromM
existing groups to form a new group to track the new target.
On the other hand to deal with a disappearing target, the
sensors which are tracking this target should split and merge
with the existing groups.

As discussed in Section II, the mobile sensor network
can be considered as a dynamic graph (dynamic topology).
Hence we can apply some graph partitioning algorithms to
decompose the graph into sub-graphs (sub-groups). However,
some existing methods for graph partitioning are centralized
methods, which means that each sensor need global knowl-
edge of the whole network’s state to split from the network.
There are also some distributed graph partitioning or dis-
tributed graph clustering methods, but they are usually based
on the density of node’s distribution (seeLiterature review
section). Hence the size of sub-groups is not predetermined,
or the number of sensors in each sub-group is different.

Based the above analysis, this paper proposes a seed
growing graph partition (SGGP) algorithm to decide which
sensor in the network should track new targets. The main
idea of this algorithm is based on seed growing. This means
that the mobile sensor which is closest to the new target
will initiate the growth of the sensors into a new group by
broadcasting the message to its sons in a recursive fashion
until the number of sensors in the subgroup is equal to a
predetermined threshold (ΘS). By growing the number of
sensors in each generation from the seed sensor (the sensor
closest to the new target), the formation of each sub-group
is maintained during splitting. This leads to minimized total
energy and time consumption.

Assume all mobile sensors already formed a network with
anα-lattice configuration (see Figure 1). In this configuration
if the sensor has 5 or 6 neighbors (6 is the maximum
number of neighbors in this configuration) this sensor will
be inside the network. If the sensor has less than or equal
to 4 neighbors it will be on the border of the network. This
sensor is called a border sensor. Based on this fact, the SGGP
algorithm is summarized as follows:

Step 1.Each sensor checks to find how many neighbors
it has and decides if it is a border sensor.

Step 2.Each border sensor computes the distance to the
new target and forwards this distance information to the other

border sensors, and receives the distances from other border
sensors.

Step 3.Each border sensor compares its distance with the
received distances from other border sensors and finds the
sensor with smallest distance to be set as the Seed Sensor
(SS).

Step 4. The SS counts its sons and broadcasts the pre-
determined size of the new group to its sons. If the size of
the new group is less than the predetermined size the sons
will continue passing the message to their sons. This process
is repeated until the size of the new group is equal to the
predetermined size.

Remark. In the SGGP algorithm, the number of sons of
sensori is defined as:

|Si | = |Ni |− |Fi|− |DBi| (6)

here|Si |, |Ni |, |Fi | and |DBi | are the number of sons, neigh-
bors, fathers and the direct brothers of sensori, respectively.
For example in Figure 1, SS is the father of sensors 2, 3
and 4. Sensor 3 is the direct brother of sensor 2, hence the
sons of sensor 2 are only sensors 5 and 6. Sensor 2 can know
sensor 3 being its direct brother because its father (SS) sends
a message{DB} to tell which sensor is its direct brother. In
addition, two or more sensors can have the same son, but
if a sensor has the priority{P} to count this same son first
the remaining sensors will not count this son again. For an
example of this situation, sensors 2 and 3 have the same son,
sensor 5, but because of its smaller ID sensor 2 receives a
message consisting of{P} from its father (SS) hence it has
priority to count sensor 5 as its son first then it sends the
counting number (CN) to its direct brother sensor 3.

Figure 1 shows the message exchange when applying the
SGGP algorithm. The slashed green arrows represent the
counting number (CN) which is sent after counting, and
the solid red arrows represent the message exchange. In this
scenario assuming that we have 30 sensors (n=30), and they
already formed a network withα-lattice configuration. This
sensor network is tracking the current target. When a new
target appears, by applying the SGGP algorithm 15 sensors
(ΘS = n/2) split from the network to track the new target
with the total distance of all n/2 sensors to the new target
being minimized.

B. Multiple dynamic targets tracking

In the multiple targets scenario, we assume that each
sensor is integrated with the flocking control algorithm,
which deals with each different target(qmtl , pmtl ) with l =
1,2, ...,M described as below.

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−ct
1(qi −qmtl )−ct

2(pi − pmtl ). (7)

As discussed in Section II, the dynamic target(qmtl , pmtl )
in (7) is exactly the navigation term to lead the flocks
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Fig. 1. Example of seed growing graph partition.

(mobile sensors) moving together. Without this term the
sensor network leads to fragmentation. This means that if
sensori is assigned to track another target it only need switch
to another navigation term. This also means that if the new
target appears one by one the sensors which are selected by
the SGGP algorithm will switch to another navigation term
(another target).

On the other hand in the merging case, for example, three
sensor subgroups are tracking three targets. If one of these
targets disappears then this subgroup will decompose into
two equal groups and each one will merge into one of the
remaining subgroups to track the existing target by switching
to another navigation term.

IV. EXPERIMENTAL TESTS

A. Test cases

In this section we will test our algorithm in two different
cases of sensor splitting and merging. Parameters used in this
simulation are specified as follows:

Case1. Two targets appear one by one and no target
disappears.

- Parameters of flocking: Number of sensors = 120 (ran-
domly distributed in the rectangular area with the size of
90x90), the communication ranger = 1.2∗d with d = 7.5,and
ε = 0.1 for theσ-norm.

- Parameters of target movement: The targets move in the
sine wave trajectory: For the target 1,qmt1 = [50+35t, 295−
35sin(t)]T with 0≤ t ≤ 8.5, and for the target 2,qmt2 = [85+
35t, 55−35sin(t)]T with 1.26≤ t ≤ 8.5, and∆t = 0.002 is
the step size.

In this case, the SGGP algorithm will be compared with a
Random Selection (RS) algorithm. In the RS algorithm when
the new target appears a half of the sensors in the network
which are tracking the existing target are selected randomly
to track the new target.

Case2. Two targets appear one by one and one target
disappears.

- Parameters of flocking: these parameters are the same
with the Case 1.

- Parameters of target movement: Parameters are set up
the same as in Case 1, but the target 1 is set to run in the
interval time 0≤ t ≤ 12.5, and the target 2 appears at time
t = 1.26 (at iteration 840) and disappears at timet = 8.4 (at
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iteration 4200).
Figure 2 (a) displays the result of tracking of Case 1 where

the targets appear one by one and move in a sine wave
trajectory. Firstly, the whole group of 120 mobile sensors
form an α-lattice configuration and track target 1. Then, at
iteration 840 target 2 appears and the network decides which
sensors will split and track this target. By applying the SGGP
algorithm, the sensor network automatically decomposes into
2 equal sub-groups (60 sensors in each sub-group). The
second sub-group which is closest to target 2 tracks target
2, and the first sub-group keep tracking target 1. The SGGP
algorithm allows two sub-groups to maintain their formation
when they split. Figure 2(b) represents the error between
the average of positions in the whole network and target 1
(from iteration 1 to 839), and the error between the average
of positions in sub-group 1 and target 1 (from iteration 840
to the end). Figure 2(c) represents the error between the
average of positions in sub-group 2 and target 2. We see
that at iteration 840, the average of positions of sensors
slightly changes because at this time the average of sensors’s
positions in sub-group 1 will replace that of the whole
network. In this figure we see that all tracking errors are very
small in free space. This means that all sensors in the whole
network or in each sub-group can surround the target closely
to observe it easily. However in the presence of obstacles, the
errors are significant because the repulsive forces generated
from obstacles push the sensors away from them.

Figures 3 shows the results of tracking in Case 2 where
the targets appear one by one and then one disappears. When
target 2 appears at iteration 840 the results are similar with
Figures 2. When target 2 disappears at iteration 4200 sub-
group 2 which is tracking this target will rejoin sub-group
1 and continue to track target 1. The tracking result of the
whole group after merging is good with small tracking error
between the average of sensors’s positions and target 1 in
the free space as shown in Figure 3 (b) (from iteration 4200
to the end).

B. Comparison between the SGGP algorithm and the RS
algorithm

In this subsection we will compare two algorithms, SGGP
and RS, in term of tracking time, formation time, and total
distance of all sensors in each sub-group to its target. These
comparisons also imply the time consumption and power
consumption in each sub-group.

Similar to Figures 2 (a, b, c), Figures 2 (a’, b’, c’) also
shows the results of tracking to Case 1 where the targets
appear one by one and move in the sine wave trajectory.
However, the difference here is that when target 2 appears
half sensors in the whole network are split to track this target
by using the RS algorithm. With this algorithm two sub-
groups do not maintain their formation, and all sensors in
each sub-group need certain time to reform a network. This
is the main drawback of this algorithm, and some data are
collected to compare the SGGP and the RS algorithms which
is shown in TableI .

Parameters in the TableI are computed as follows:

TABLE I

COMPARISON BETWEEN TWO ALGORITHMSSGGPAND RS.

Algorithms Dtt (units) tT (s) tF (s)
RS (G1) 1184.7 1.000801 8.345623
RS (G2) 14194 11.770489 11.125117

SGGP(G1) 1185.6 1.203569 0.0
SGGP(G2) 13126 9.007456 0.0

Dtt is the total travel distance between all sensors in each
group and its target, and it is computed when the network is
decomposed into sub-groups to when the average of positions
of sensors in each sub-group reaches the target (this is
evaluated based on the same condition as used to compute
tT below).

tT is the tracking time which is computed based on the
condition: ‖ 1

nGl
∑

nGl
i=1qi − qtl ‖ ≤ ΘT , l = 1,2; here nGl is

number of sensors in each sub-groupG1 andG2 respectively,
andΘT is a given threshold.

tF is the formation time representing the time that it costs
all mobile sensors to form a network. This formation time
is computed based on the following condition:

Var(‖qi−q j‖)= 1
|El |

∑ (‖qi −q j‖−
1

nGl
∑(i, j)∈El

‖qi −q j‖)
2

≤ Θ3 with i, j = 1,2, ..., nGl ; l = 1,2; hereΘF is a given
threshold, andi , j.

In the RS algorithm, the values ofDtt , tT , and tF are
obtained based on the average value of 50 running times.

Comparison between RS and SGGP algorithms: The max-
imum of the tracking time and formation time in SGGP
algorithmtmax

SGGP= max(tT ,tF)G1 +max(tT ,tF)G2 = 10.211(s)
while in RS algorithmtmax

RS = 20.1161(s), or tmax
SGGP is 49.28

% less thantmax
RS . The total distance in SGGP algorithm

Dt
SGGP= DG1

tt + DG2
tt = 14311.6(units) while in the RS al-

gorithmDt
RS= 15378.7(units), or Dt

SGGP is 7% shorter than
Dt

RS.
In all the above simulation results, all sensors keep their

formation (excepting in the case of the RS algorithm) and
no collision occurs among them while tracking the moving
target, and all sensors avoid obstacles successfully in a
narrow space. For more details please see some video files
which are available at our ASCC Lab’s website.

htt p : //ascc.okstate.edu/pro jectshung.html

V. CONCLUSIONS

This paper develops an approach to flocking control of
a mobile sensor network to track and observe multiple
dynamic targets. The SGGP algorithm is proposed to solve
the problem of splitting/merging the sensor agents. To see
the benefit of this algorithm we compared it with a random
selection (RS) algorithm, and the results are promising. The
maximum of the convergent distance and formation time in
the SGGP algorithm is faster than that in the RS algorithm. In
addition, the distance in the SGGP algorithm is shorter than
that in the RS algorithm. The numerical experimental tests
were done with two different cases of splitting and merging
sensor agents to demonstrate our theoretical results.
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Fig. 2. (a, a’)- Snapshots of the beginning initial position of whole group, splitting positions of sub-group 2 and the ending positions of two sub-groups
which are tracking the targets moving in the sine wave trajectories, (b, b’)- Error between the average of sensors’s positions in the whole network and
target 1 (iteration 1 to 839), and between the average of sensors’s positions in sub-group 1 and target 1 (iteration 839 to the end), (c, c’)- Error between
the average of sensors’s positions in sub-group 2 and target 2. These results are done by using the flocking control algorithm (7) with SGGP and RS
algorithms, respectively
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Fig. 3. (a)- Snapshots of the beginning initial position of whole group, splitting positions of sub-group 2 and the ending positions of two sub-groups
which are tracking the targets moving in the sine wave trajectories, (b)- Error between the average of sensors’s positions in the whole network and target 1
(iteration 1 to 839, and iteration 4200 to the end), and between the average of sensors’s positions in sub-group 1 and target 1 (iteration 840 to 4200), (c)-
Error between the average of sensors’s positions in sub-group 2 and target 2. This result is done by using the flocking control algorithm (7) and SGGP
algorithm.
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