
Pinch Ratio Clustering from a Topologically Intrinsic Lexicographic Ordering

Douglas Heisterkamp∗ Jesse Johnson†

Abstract
This paper introduces an algorithm for determining data
clusters called TILO/PRC (Topologically Intrinsic Lexico-
graphic Ordering/Pinch Ratio Clustering). The theoretical
foundation for this algorithm, developed in [14], uses ideas
from topology (particularly knot theory) suggesting that it
should be very flexible and robust with respect to noise.

The TILO portion of the algorithm progressively im-
proves a linear ordering of the points in a data set until the
ordering satisfies a topological condition called strongly irre-
ducible. The PRC algorithm then divides the data set based
on this ordering and a heuristic metric called the pinch ratio.

We demonstrate the effectiveness of TILO/PRC for
finding clusters in a wide variety of real and synthetic data
sets and compare the results to existing clustering methods.
Moreover, because the output of TILO depends on the
initial ordering, we consider the effects of different random
orderings on the final clusters defined by PRC, and show that
choosing an initial ordering based on a different clustering
algorithm can improve the final clusters. These results
verify that both the theoretical foundations of TILO and
the heuristic notion of pinch ratio are reasonable.

1 Introduction

Data mining is the search for patterns and structure in
large sets of (often high dimensional) data. This data
is generally in the form of vectors, which one thinks
of as points sampled from some underlying probability
measure. This probability measure may be a sum of
probability measures corresponding to different types
of points, in which case one expects the different types
of points to form geometrically distinguishable clusters.

Clustering algorithms fall into a number of cate-
gories determined by the assumptions they make about
the underlying probability measures and their approach
to searching for clusters [6, 13]. The K-means algo-
rithm [10] assumes that the underlying measures are
Gaussian distributions centered at K points through-
out a Euclidean space. Hierarchical clustering algo-
rithms [3,22] arrange the data points by building a tree
in either a top-down or bottom up manner. This al-
lows much more flexibility of the model and the metric,
but for many of these algorithms, the final structure is
dependent on the order in which the tree is constructed.

Graph partitioning algorithms translate the data
points into a graph with weighted edges in which the

∗doug@cs.okstate.edu, Department of Computer Science, Ok-

lahoma State University.
†jjohnson@math.okstate.edu, Department of Mathematics,

Oklahoma State University.

weights reflect the similarity between points in whatever
metric is most natural for the given type of data. The
clusters are defined by subgraphs that can be separated
from the whole graph by removing relatively few edges.
Graph clusters should come very close to realizing the
Cheeger constant for the graph and there are algorithms
for finding them based on linear programming [17] as
well as spectral analysis of the Laplacian of the ad-
jacency matrix [4]. Carlsson and Memoli [1] recently
introduced a hierarchical clustering method based on
encoding the data as a simplicial complex (a general-
ization of a graph), giving the algorithm a very strong
grounding in topology.

In [14] another topological approach to graph clus-
tering was suggested, based on the idea of thin posi-
tion for knots and 3-manifolds [9, 20]. In the context
of 3-manifolds, thin position determines minimal genus
Heegaard splittings, which are related to minimal sur-
faces [19] and the Cheeger constant [15]. In [14] thin
position was translated into the framework of graph
partitioning/clustering. The present paper describes
and studies the resulting algorithm that we will call
TILO (for Topologically Intrinsic Lexicographic Order-
ing). TILO makes few assumptions about the underly-
ing structure of the data. For example it does not make
the assumption that the clusters are of equal size or the
assumption of similar cluster shapes. It also does not
need to know the desired number of clusters.

TILO returns a linear ordering of the vertices of
a graph in which it considers as strongly irreducible
(see below in Theorem 2.1). A linear ordering o is a
permutation of the integer indices of the vertices of a
graph. If a graph contains vertices vi for 0 ≤ i < N
then the ith vertex of order o is vo(i) . TILO guarantees
that all of the local minima associated with the ordering
are valid locations to split the graph into pinch clusters
(see below in Definition 2.1). The ordering that TILO
returns may have a large number of local minima, some
reflecting the structure of the data and other resulting
from noise. To address the question of selecting from
the valid locations found by TILO to create the desired
number of clusters, we created the pinch ratio clustering
algorithm (PRC).

A road map of the paper is as follows. In section 2,
the mathematical foundation from [14] is summarized

and the TILO algorithm is presented. In section 3,
we propose a new measure called pinch ratio which
is based on concept of a topological thin position and
thick width. We then present the pinch ratio clustering
algorithm (PRC). In section 4, we evaluate TILO and
PRC on real world data sets and in comparison to other
common clustering algorithms. The appendix contains
the experimental parameters.

2 Topologically Intrinsic Lexicographic
Ordering

The TILO algorithm was inspired by a technique called
thin position that has been used in knot theory and 3-
dimensional topology [9, 20]. Thin position has been
shown to be related to Cheeger constants [15] and to
minimal surfaces [19]. The TILO algorithm uses a linear
ordering of the vertices of a graph to induce a “width”
and then looks for ways to modify the order to find
“thinner” orderings.

Let G = (V, E) be a graph, where V is the set of N
vertices and E the set of (weighted or unweighted) edges.
We will assume that each edge has distinct endpoints.
For a vertex subset A ⊂ V, the denote the complement
as Ā = V \A. For a vertex subset A ⊂ V, the boundary
∂A ⊂ E is the set of edges with one endpoint in A and
the other endpoint in the complement Ā. The size of
the boundary |∂A| is the sum of the edge weights. A
weight value of one is used for a graph with unweighted
edges. There is no universally agreed upon definition
of a cluster, but roughly speaking one would want it to
have a relatively small boundary relative to the weights
of the edges that do not cross its boundary. We will use
the following definition from [14]:

Definition 2.1. A pinch cluster is a set of vertices
A ⊂ V with the property that for any sequence of vertices
w1 , . . . ,wm , if adding w1 , . . . ,wm to A or removing
w1 , . . . ,wm from A creates a set with smaller boundary
then for some k < m, adding/removing w1 , . . . ,wk

to/from A creates a set with strictly larger boundary.

In other words, if you add a sequence of vertices to A
or remove a sequence of vertices from A one at a time,
the boundary size must increase before it decreases.

Let ordering o be a permutation of the integers
zero to N -1. Define the set of vertices Ai with re-
spect to ordering o and vertices V={v0 , . . . ,vN−1 }
as Ai = {vo(k) | 0 ≤ k ≤ i}. That is, the vertices us-
ing the first i + 1 indices from ordering o. Let
b=[|∂A0 |, . . . , |∂An−1 |] be the array of boundaries of
Ai with respect to ordering o and graph G for i ranging
from zero to N -1. Note that bn−1 = 0 as the bound-
ary between the whole set and the empty set is zero.
For convenience, we will logically extend b with b−1 =0.

TILO (graph G, order o)
1. repeat
2. flag = false
3. calculate boundaries using current ordering o
4. for each max flat f with range (b,c) do
5. a = end index of previous local min flat
6. d = start index of next local min flat
7. v = max {0} ∪
{sb,k − sb,b+1 − 2G[o(k),o(b+ 1)] | a ≤ k ≤ b, sb,k > 0}

∪
{−sc,k + sc,c − 2G[o(k),o(c)] | c < k ≤ d, sc,k < 0}

8. if v > 0 then
9. let k be an index with value v
10. if k ≤ b then
11. cyclic shift k to b+ 1 in order o
12. else
13. cyclic shift k to c in order o
14. end-if-else
15. flag = true
16. end-if
17. end-for
18. until not flag
19. return order o

Figure 1: The Topologically Intrinsic Lexicographic
Ordering Algorithm

The width of the ordering o is the values of array b
sorted into non-increasing order. We will compare the
widths of different orderings using lexicographic (dic-
tionary) ordering: Given widths u and v then u < v if
there is a value i such that ui < vi and uj = vj for
every j < i. In other words, start from the front of the
arrays and find the first element in which they disagree
and make the comparison based on that element.

The TILO algorithm is presented in Figure 1. The
algorithm uses a family of permutations called shifts
to reduce the width of an initial ordering. When
the width can no longer be reduced, the ordering is
called strongly irreducible and the local minimums in
the boundary array indicate locations where the vertices
can be partitioned into two pinch clusters. To discuss
the algorithm, we need to define the additional terms,
slope, flat, and shift.

The slope sA(v) of a vertex v ∈ V with respect to
subset A ⊂ V is the sum of the edge weights from v to
vertices in Ā minus the sum of the edge weights from
v to vertices in A. If v /∈ A then this is the amount
that the boundary |∂A| will increase if we add v into
the set. If v ∈ A, this is the amount |∂A| will decrease
if we remove it from A. Since Ai = Ai−1 ∪ {vo(i) }

then |∂Ai | = |∂Ai−1 | + sAi−1
(vo(i)). We will use the

abbreviation si,j to mean sAi
(vo(j)).

A flat in b is an interval [i, j] with i ≤ j such that
bi = bi+1 = · · · = bj , bi−1 6= bi , and bj+1 6= bj .
Note that a flat may consist of a single element [i, i].
A flat is locally maximal if bi−1 < bi and bj+1 < bj .
Similarly, a flat is locally minimal if bi−1 > bi and
bj+1 > bj . We will say that i ∈ [0, N − 1] is a
local minimum/maximum if it is contained in a locally
minimal/maximal (respectively) flat.

A cyclic shift on a subsequence of inte-
gers will move each integer to the left (or
right) by one with wrapping around the ends
of the subsequence. Given an initial sequence
x = [. . . ,xi−1 ,xi ,xi+1 , . . . ,xj−1 ,xj ,xj+1 , . . .] then
cyclic shifting i to j moves all of the elements from i to
j left one location and wraps i around to j’s location:
y = [. . . ,xi−1 ,xi+1 , . . . ,xj−1 ,xj ,xi ,xj+1 , . . .] and
cyclic shifting j to i moves all of the elements from i to
j right one location and wraps j around to i’s location:
x = [. . . ,xi−1 ,xj ,xi ,xi+1 , . . . ,xj−1 ,xj+1 , . . .] where
xi is the integer value of the sequence at the ith
location and y is the sequence resulting from the shift.

The TILO algorithm presented in Figure 1 can be
summarized as calculate the boundary of the current
ordering, find and apply the best valid shift for each
maximum flat of the boundary, repeat until then are no
more shifts. TILO uses Lemma 3 of [14] to determine
if a shift is valid. This criterion is implemented in
lines 7 and 8 of Figure 1. Verbally, this is saying
that any location k from the end of the previous local
minimum flat to the start location b of the current
maximum flat is valid if slope sb,k and expression
sb,k − sb,b+1 − 2G[o(k),o(b+ 1)] are both greater than
zero. Note that G[o(k),o(b + 1)] means the weight of
the edge between vertices vo(k) and vo(b+1) . If k is
valid then cyclic shifting k to b + 1 in o will result
in a new boundary array with all values less than or
equal to the values in the current boundary array. The
second part of the condition is saying that any location
k from the end location c of the current maximum flat
to the start of the next location minimum flat is a
valid location if slope sc,k less than zero and expression
−sc,k + sc,c − 2G[o(k),o(c)] is greater than zero. If k is
valid then cyclic shifting k to c will reduce the boundary
array values. The location k that is selected is the one
with the largest expression value as that corresponds
to the amount that the boundary at the maximum flat
location will be reduced. Lemma 3 of [14] guarantees
these shifts will strictly reduce the width of the ordering.

When TILO stops due to there being no more valid
shifts, then the following theorem from [14] holds.

Theorem 2.1. Given any initial ordering, if one re-

peatedly applies shifts that strictly reduce the width of
the ordering, the process will terminate with a strongly
irreducible ordering after a finite number of steps. In
a strongly irreducible ordering, if i is a local minimum
with respect to width then Ai and its complement are
pinch clusters.

TILO is a greedy algorithm and is not guaranteed
to find an ordering with the globally minimal width.
But Theorem 2.1 guarantees that it will converged to
an ordering with a locally minimal width and that
all local minima in the corresponding boundary array
are locations at which the vertices can be partitioned
into a pair of pinch clusters. An interesting facet of
TILO is how it is greedy. It does not greedily search
orderings to create good local minimums. Instead, it
reduces the local maxima first as they are the leading
terms in the width of the ordering. After it finishes
squeezing the local maxima, the local minima are also
set. Normally, TILO stops as soon as the local minima
and local maxima are fixed. By a slight extension of
Lemma 3 of [14] TILO can run until the width at all
locations is minimized. This can be useful if we want
to use the width of an ordering to select between two
different runs of TILO.

An example of running TILO on a small graph is
provide in Figure 2. The graph has a slight preference
for an even-odd clustering of the vertices. The initial
ordering o=[0, 1, 2, 3, 4, 5] has boundary b=[3, 4, 5, 4, 2]
and width w=[5, 4, 4, 3, 2]. After four shifts, the final or-
dering is o=[4, 0, 2, 1, 3, 5] with boundary b=[2, 3, 2, 3, 2]
and width w=[3, 3, 2, 2, 2]. The local minimum at
b2 corresponds to A2 = {vo(0) ,vo(1) ,vo(2) } =
{v4 ,v0 ,v2 } which is a pinch cluster. The complement,
Ā2 = {v1 ,v3 ,v5 } is also a pinch cluster.

The internal loop of TILO is fast as its operations
are simple. The boundary and the slopes si,j can be
pre-calculated and incrementally updated based on the
range of the shifts. An additional note for step 5 of the
TILO algorithm is needed as care must be taken to not
have overlapping shifts. If d was used in the reducing
the previous maximum flat and the local minimum flat
is just the single location d then the next maximum flat
would need to start its search at a+ 1, which would be
d+ 1.

3 Pinch Ratio Clustering

The boundary array associated with strongly irreducible
ordering will have sets of local minima and local max-
ima. Any local minima can be selected to form a pinch
cluster. Any measure of cluster quality may be used to
make the selection, such as normalized cut [21]. Using
our notation, the normalized cut value of the sets Ak

0 1

2 3

4 5

b0 b0
b1

b1

b2
b2

b3
b3

b4

b4

Initial order o=[0, 1, 2, 3, 4, 5]; boundary b=[3,4,5,4,2].
Cyclic shifting order index 4 to index 2.

0 1

2 3

4 5

b0 b0
b1

b1

b2

b2

b3

b3

b4

b4

Order o=[0, 1, 4, 2, 3, 5]; boundary b=[3,4,4,3,2].
Cyclic shifting order index 1 to index 2.

0 1

2 3

4 5

b0 b0

b1

b1

b2

b2

b3

b3

b4

b4

Order o=[0, 4, 1, 2, 3, 5]; boundary b=[3,3,4,3,2].
Cyclic shifting order index 2 to index 3.

0 1

2 3

4 5

b0 b0

b1

b1 b2

b2

b3

b3

b4

b4

Order o=[0, 4, 2, 1, 3, 5]; boundary b=[3,3,2,3,2].
Cyclic shifting order index 0 to index 1.

0 1

2 3

4 5

b0

b0
b1

b1 b2

b2

b3

b3

b4

b4

Order o=[4, 0, 2, 1, 3, 5]; boundary b=[2,3,2,3,2].

Figure 2: TILO example on a graph with a slight
preference for an even-odd clustering of the vertices.

and Āk is

(3.1) NCutk =
bk
|Ak |

+
bk
|Āk |

.

This normalizes the local cut value bk by the volumes
of the two partitions. We propose using the additional
information available in array b when TILO finishes to
create a measure that we call the pinch ratio. The pinch
ratio will use the idea of a thick width which is the
minimum over all possible ordering of the max cut of
a set. The thick width give us a measure of the internal
cohesiveness of a set. The max cut of a set is the largest
boundary of a binary partitioning of the set. When
restricted to an ordering, it is the largest value in the
boundary array. TILO reduces this value. We have
two thick widths, one for Ak and one for Āk . We use
the smaller thick width in determining the pinch ratio.
The pinch ratio at a location k is the ratio of the thin
position width over the thick width. In terms of the
boundary, it is

(3.2) pinch ratiok =
bk

min

(
max
p≤i≤k

bi , max
k<j≤q

bj

) .
where p ≤ k < q is the range of interest in the boundary
(typically, p = 0 and q = N − 1).

To motivate the idea, think of a rubber band
stretched over the point set at linear position k with
the tension in the rubber band proportional to the
cost of cutting the adjacency graph of the point set
into sets Ak and Āk (i.e., the boundary value bk).
The rubber band could be pulled off by either going
over set Ak or set Āk . Either set is traversed in
the given linear order and the tension in the rubber
band at each location is proportional to the boundary
at that location. The thick width is the minimum
maximum effort needed to remove the rubber band,
i.e. the minimum of the maximum boundary from
each set. Since TILO reduces the maximum boundary
values until it reaches a strongly irreducible ordering,
the maximum boundary of Ak can be viewed as an
approximation to the minimum max cut of Ak with
respect to the entire graph.

Pinch ratio clustering uses the pinch ratio to find a
good location to split the current set with the range of
the max operators in the denominator of (3.2) limited
to the current set. The pinch ratio clustering algorithm
PRC is presented in Figure 3. FindSplit(C,o) in lines 4
and 15 of PRC returns the value and location of the best
pinch ratio in the set C with respect to the order o. If no
split locations are found then infinity is returned for the
value and minus one for the location. Lines 13 and 14
are not needed if three or fewer clusters are to be found.

PRC(graph G, order o, number of partitions k)
1. run TILO on G and o
2. initialize Q to empty min priority queue
3. C ← {i|i ∈ o}
4. q,t ← FindSplit(C,o)
5. enqueue tuple (q,t,C) on to Q
6. while length of Q < k do
7. qi,ti,Ci ← Q.dequeue()
8. if no split location ti then
9. break out of while loop
10. end-if
11. Cj ,Ck ← Split(Ci ,ti)
12. for y in {j, k} do
13. p ← MoveToFront(Cy ,o)
14. run TILO on G and p restricted to Cy
15. qy,ty ← FindSplit(Cy ,p)
16. enqueue tuple (qy,ty,Cy) on to Q
17. end-while
18. return Q // each Cj in Q represents

// a different cluster

Figure 3: The Pinch Ratio Clustering Algorithm

Line 13’s MoveToFront creates a new order with cluster
Cy at the beginning of the order. Note that running
TILO in line 14 is done to get a better estimate of the
thick width, rather than to find new pinch clusters. To
save computation, lines 13 and 14 can be skipped by
using the thick width estimates from the initial TILO
run.

The PRC algorithm is presented using the parame-
ter k for the number of partitions. An alternative form
of the algorithm is to pass in a threshold value ε. Then
the while loop would stop when the pinch ratio value qi
in line 7 becomes greater than ε and a variable number
of partitions is returned. If a hierarchical clustering is
desired then the while loop would run until there are no
more split locations. An addition data structure would
be used to record the parent-child relationship of the
split in line 11.

4 Experimental Results

In this section we present a number of experiments to
show the efficacy of TILO/PRC1. We used one synthetic
2D data set and seven real world data sets. The
2D synthetic example was motivated by [13, Figure 2]

1The C++ source code for running PRC and TILO is avail-

able at http://www.cs.okstate.edu/~doug/src/prc. An initial
Python binding is also available.

with 1200 points sampled from eight distributions.
The distributions are described in the appendix and
the actual point samples used in the experiments are
available at the same location as the PRC source
code. The real world datasets include iris, glass, vote,
ionosphere, OQ, and UV from [7] and 14cancer from
[11]. The OQ and UV data sets are subsets of the
overall letter data set. Items with missing attributes
were removed and only the training sets were used, if
partitioned into training and testing. The attributes
were converted into numerical values, but otherwise no
feature preprocessing was done. Gaussian similarity

function s(xi ,xj) = exp(
−‖xi−xj ‖2

2σ2) was used for the
iris, 2Dsyn, and vote datasets. The k-nearest neighbor
similarity was used for the remaining datasets. The k-
nearest neighbor similarity used is 1 for both points if
either point is one of the k nearest to the other point,
and 0 otherwise. The values of k and σ were chosen
using the heuristics presented in [16] of k ≈ log(N) + 1
and σ being the average distance to the kth nearest
neighbor where N is the number of data points.

Clustering algorithms DBScan [5], Affinity Propa-
gation [8], Mean Shift [2], Spectral Clustering [21], and
K Means [10] were used for comparison. The scikit [18]
implementations of the algorithms were used. The pa-
rameters settings for each the algorithms was generated
by scikit’s implementation. The data sets have class la-
bels which were used to evaluated the performance of
the clustering algorithms. The number of classes of each
data set was used as the desired number of clusters. The
performance was measured by purity and Adjusted Rand
Index (ARI) [12]. Purity is the classification rate with
the majority vote of a cluster selecting the cluster’s class
label. It is easy to understand, but fails as the number
of predicted clusters becomes larger than the number of
class labels. The ARI is a popular approach to compare
the similarity of two different partitions. The predicted
partitions were compared to the partition created from
the ground truth class labels.

The first set of experiments investigated selecting
the partitions from the lexicographic order generated by
TILO using the best pinch ratio (3.2) values and using
the best normalized cut (3.1) values on the iris data
set. The iris data set has three classes with one class
linearly separable from the other two. One thousand
random initial orderings were processed by TILO and
for each, three clusters were formed by selecting the
local minimums with the best pinch ratio values and
the best normalized cut values. A histogram of the
purity values of the resulting partitions are plotted in
Figure 4a for pinch ratio and in Figure 4b for normalized
cut. The peak for pinch ratio is higher than the peak
for normalized cut (0.96 vs. 0.89). This pattern was

repeated in the other data sets with the exception of the
two letters sets OQ and UV. In those cases the peaks
were so low that it does not seem relevant (see Figures
4h and 4i for the ARI histograms). The ARI histograms
of running TILO/PRC on one thousand random initial
orderings of the data sets is presented in Figure 4.

The first experiment demonstrated that the pinch
cluster definition used in TILO can correspond to mean-
ingful clusters in real data sets. Since both the pinch ra-
tio and the normalized cut measures used the same sets
of possible cut locations from TILO, we conclude that
the extra topological information in the linear ordering
does provide useful information for creating clusters and
that the thick width of the pinch ratio is a reasonable
measure of a cluster.

The second set of experiments involved running
TILO ten times on each data set with random initial
linear orderings, then selecting the final ordering with
the smallest lexicographic width. TILO was allowed
to completely reduce the lexicographical order (TILO
can also stop as soon as the local minima and maxima
are determined). This order was then used to deter-
mine the clusters using pinch ratio and using normalized
cut. The other clustering algorithms were also applied
to each data set. Ten separate trails were also used for K
means. The number of desired clusters was supplied to
TILO/NCUT, TILO/PRC, K Means, and spectral clus-
tering. The other algorithms automatically determined
the number of clusters. In the third set of experiments,
the cluster labels from the other algorithms were used
to set the initial ordering for TILO by grouping points
with the same label into a contiguous segments. The re-
sults from both experiments are presented in Figure 5.
The brown bars present the performance of the original
algorithm. The orange bars present the performance of
TILO/PRC with the initial ordering based on the clus-
ters from the other algorithm. Performance was mea-
sured using ARI. For some of the data sets, the poor
performance of DBscan, Affinity Propagation, and/or
Mean Shift is due to the mismatch of the number of
predicted classes and the number of actual classes. For
example on the iris data set, Affine Propagation pre-
dicted 21 clusters yielding a purity of 0.97 but an ARI
of only 0.19. On iris, both DBscan and Mean Shift pre-
dicted two classes. It is assumed that the performance
of these algorithms could be improved by tuning some
of their parameters instead of using the default settings.

To help understand the effect of using another
algorithm’s clustering to seed the initial linear order,
histograms of running TILO/PRC on one thousand
random initial orderings of the data sets is presented
in Figure 4. For the iris, vote, and cancer data sets, the
results of the initialized TILO/PRC end up in the peak

area of the histograms. For those sets, the initialization
does not help as TILO/PRC was already performing
well from the random initialization. For 2Dsyn and
glass, the initialization help select a partitioning at the
high edge of the histogram (0.63 for 2Dsyn and 0.27
for glass). For ionosphere, the initialization did not
help and for most of the algorithms, they performed
worse than the best of ten random initialization. This
may be the result of the heavy tail on the lower side
of the peak in the histogram. The OQ and UV data
sets are interesting in that the original performance of
all of the algorithms had very poor ARI. The scores
are so close to zero that they don’t look like they are
plotted on the graphs in Figures 5g and 5h. However,
TILO/PRC found a very good partitioning for OQ when
initialized with DBScan or Mean Shift and found a very
good partitioning for UV when initialized with Affinity
Propagation or Mean Shift. The purity (classification
accuracy) of the UV clusters is 0.997 for both and of
the OQ clusters is 0.925 and 0.89. Those scores would
not be bad for a supervised learning algorithm and are
outstanding for an unsupervised learning algorithm. As
can be seen from Figures 4i and 4h, the histograms for
both UV and OQ are very heavy close to zero implying
for those data sets randomly selecting an initial order
that converges to a good partitioning is unlikely.

Table 1 presents the average CPU times of 1000 runs
of TILO on the data sets. In addition, synthetic Even-
Odd graphs were timed. In the EvenOdd graph, each
node has 100 random edges of which 70 are to nodes
with the same parity and 30 to nodes with opposite
parity. The running time of TILO depends on the
number of cyclic shifts needed to reduce the order. The
computational cost of a shift depends on the number
of nodes involved (updating the order) and their edges
(updating boundary and slopes). All runs used a single
core of a Intel Xeon E5620 CPU running at 2.40 GHz.

5 Conclusion

This paper presents TILO and TILO/PRC algorithms.
These algorithms provide a novel computational ap-
proach for determining clusters based on a principled
theoretical foundation in geometric topology. Experi-
ments show that good partitions can be selected from
TILO’s ordering using either pinch ratio or normalized
cut. Pinch ratio has a clear advantage when the size
of the partitions are not expected to be equal. Exper-
iments also demonstrate that TILO can converge to a
very good partitioning over a number of real world data
sets. As a greedy algorithm, TILO can become stuck in
a local minimum far from the global minimum. Exper-
iments show that it can be useful to initialized TILO
with the clustering results of another algorithm. As the

0.0 0.2 0.4 0.6 0.8 1.0
Purity

0

50

100

150

200

250

300

350

400

450

(a) Iris purity using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Purity

0

100

200

300

400

500

600

700

(b) Iris purity using normalized cut

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

100

200

300

400

500

600

(c) Vote using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

20

40

60

80

100

120

140

160

(d) 14cancer using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

20

40

60

80

100

(e) 2Dsyn using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

20

40

60

80

100

120

140

(f) Glass using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

20

40

60

80

100

120

(g) Ionosphere using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

100

200

300

400

500

600

(h) OQ using pinch ratio

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted Rand Index

0

100

200

300

400

500

600

700

(i) UV ARI using pinch ratio

Figure 4: Histograms of the quality of clusters form from the strongly irreducible orderings generated by TILO
on runs over one thousand random initial orderings.

computational cost of PRC and TILO is not large, the
authors suggest that data analysts try refining their re-
sults with TILO/PRC.

For very large data sets, the linear scan of TILO
can become a bottom neck. In future work, we plan
to investigate a k branched ordering instead of a linear
ordering. This could enable a pairwise branch update
that would scale to very large data sets. Another future
direction will be to incorporate semi-supervised learning
and outlier detection into TILO/PRC.

References

[1] G. Carlsson and F. Mémoli, Multiparameter hierarchical

clustering methods, Classification as a tool for research, 2010,
pp. 63–70. MR2722123

[2] D. Comaniciu and P. Meer, Mean shift: A robust approach
toward feature space analysis, IEEE Trans. Pattern Anal.

Mach. Intell. 24 (May 2002), no. 5, 603–619.

[3] D. Defays, An efficient algorithm for a complete link method,

Comput. J. 20 (1977), no. 4, 364–366. MR0478804 (57
#18277)

[4] W. E. Donath and A. J. Hoffman, Lower bounds for the

partitioning of graphs, IBM J. Res. Develop. 17 (1973), 420–
425. MR0329965 (48 #8304)

Table 1: Average CPU Times from 1000 runs used
to create the histograms in Figure 4 and 100 runs of
synthetic even-odd graphs in which each node has 100
random edges with 70 to same parity nodes and 30
to opposite parity nodes. The σ represents standard
deviation. The shifts columns contains average total
number of cyclic shifts in TILO.

Data Nodes Edges Time±σ, sec. shifts

14cancer 144 1134 0.002±0.0003 2328
glass 214 1788 0.006±0.0007 5055
ionosph. 351 3496 0.025±0.003 14000
iris 150 13958 0.014±0.002 2625
oq 1536 16656 0.59±0.04 281977
uv 1577 16546 0.57±0.04 296598
vote 232 53592 0.061±0.009 4510
2dmulti 1165 256508 3.5±0.34 173724
EvenOdd 250 25000 0.05±0.005 2842
EvenOdd 500 50000 0.24±0.03 11646
EvenOdd 750 75000 0.60±0.09 26143
EvenOdd 1000 100000 1.2±0.15 46646
EvenOdd 2500 250000 9.8±1.1 290058
EvenOdd 5000 500000 49±5.0 1156036
EvenOdd 7500 750000 145±11.9 2591079
EvenOdd 10000 1000000 305±28.6 4592334
EvenOdd 12000 1200000 536±40.1 7172175
EvenOdd 15000 1500000 710±49.1 10306970

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-

based algorithm for discovering clusters in large spatial

databases with noise, Second international conference on
knowledge discovery and data mining, 1996, pp. 226–231.

[6] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster

analysis, 5th ed., Wiley, 2011.

[7] A. Frank and A. Asuncion, UCI machine learning repository,

University of California, Irvine, School of Information and
Computer Sciences, 2010.

[8] B. J. Frey and D. Dueck, Clustering by passing messages

between data points, Science 315 (2007), 972–976.

[9] D. Gabai, Foliations and the topology of 3-manifolds. III,

J. Differential Geom. 26 (1987), no. 3, 479–536. MR910018
(89a:57014b)

[10] J. A. Hartigan and M. A. Wong, A k-means clustering

algorithm, Journal of the Royal Statistical Society, Series C
(Applied Statistics) 28 (1979), no. 1, 100–108.

[11] T. Hastie, R. Tibshirani, and J. Friedman, The elements of
statistical learning, 2nd ed., Springer Verlag, 2008.

[12] L. Hubert and P. Arabie, Comparing partitions, Journal of

Classification 2 (1985), no. 1, 193–218.

[13] A. K Jain, Data clustering: 50 years beyond k-means, Pattern
Recognition Letters 31 (2010), no. 8, 651–666.

[14] J. Johnson, Topological graph clustering with thin position,

preprint (2012). arXiv:1206.0771.

[15] M. Lackenby, Heegaard splittings, the virtually Haken con-

jecture and property (τ), Invent. Math. 164 (2006), no. 2,
317–359. MR2218779 (2007c:57030)

[16] U. Luxburg, A tutorial on spectral clustering, Statistics and

Computing 17 (Dec. 2007), no. 4, 395–416.

[17] M. Minoux and E. Pinson, Lower bounds to the graph

partitioning problem through generalized linear programming

and network flows, RAIRO Rech. Opér. 21 (1987), no. 4,
349–364. MR932184 (89e:05159)

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine

Learning in Python, Journal of Machine Learning Research
12 (2011), 2825–2830.

[19] J. T. Pitts and J. H. Rubinstein, Existence of minimal sur-

faces of bounded topological type in three-manifolds, Minicon-
ference on geometry and partial differential equations (Can-

berra, 1985), 1986, pp. 163–176. MR857665 (87j:49074)

[20] M. Scharlemann and A. Thompson, Thin position for 3-
manifolds, Geometric topology (Haifa, 1992), 1994, pp. 231–

238. MR1282766 (95e:57032)

[21] J. Shi and J. Malik, Normalized cuts and image segmen-
tation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000),

no. 8, 888–905.

[22] R. Sibson, SLINK: an optimally efficient algorithm for the
single-link cluster method, Comput. J. 16 (1973), 30–34.

MR0321382 (47 #9915)

A Appendix: Experimental Setup

The 2D synthetic data set was generated from eight dis-
tributions: a zero mean Gaussian with unit covariance
matrix, a Gaussian centered at (0,-6) with a covariance
matrix created by scaling the minor axis scale to 1/8 of
the major axis and rotated by π

6 . The circles at cen-
tered at (6,-5) with radii of 0.5, 1.25, and 2.0 respec-
tively. The spirals are centered at (6,0) with scaling

1
2.75π . The circles and spirals were sampled at uniformly
over arc length and corruptive with Gaussian noise with
σ = 0.1 for the circles and σ = 0.02 for the spirals. The
last distribution is uniform noise over the range of the
graph. The relative weighting of each distribution is
0.15 for each Gaussian, 0.3 total for all circles, 0.35 to-
tal for both spirals, and 0.05 for the uniform background
noise.

TILO has the single parameter tiloEpsilon which
is a numerical threshold used in comparing floating
point values. PRC has the options of policyRefineTILO
and policyPRCRecurseTILO corresponding to a flag to
completely reduce the width of the order so width can be
used to compare multiple runs and to a flag to run lines
13 and 14 for the PRC algorithm to get a better estimate
of the thick width. For the experiments, The parameters
for all of the TILO/PRC runs used tiloEpsilon=1e-12,
policyRefineTILO=1, policyPRCRecurseTILO=0, and
seed=3513801. If Gaussian similarity was used for a
data set, a threshold of gausssimAdjThreshold=1e-10
was used to zero out small values.

TILO with Normalized Cut

TILO with Pinch Ratio

Other method

TILO-PRC initialized with other method
T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.0

0.2

0.4

0.6

0.8

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(a) Iris

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(b) Vote

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(c) 14cancer

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(d) 2Dsyn

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.00

0.05

0.10

0.15

0.20

0.25

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(e) Glass

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(f) Ionosphere

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(g) OQ

T
IL

O
-N

C
U

T

T
IL

O
-P

R
C

K
 M

e
a
n
s

T
IL

O
-P

R
C

S
p
e
ct

ra
l

T
IL

O
-P

R
C

D
B

S
ca

n

T
IL

O
-P

R
C

A
ff

.
P
ro

p
.

T
IL

O
-P

R
C

M
e
a
n
 S

h
if
t

T
IL

O
-P

R
C

0.0

0.2

0.4

0.6

0.8

1.0

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

(h) UV

Figure 5: The brown bars present the performance of the each algorithm on each data set. K Means, TILO/NCUT,
and TILO/PRC used ten trials. The orange bars present the performance of TILO/PRC when initialized with
ordering based on the clustering of the corresponding algorithm.

