Loopy Belief Propagation as a Basis for Communication in Sensor
Networks

Christopher Crick and Avi Pfeffer
Harvard University
{crick@fas,avi@eecs}.harvard.edu

Abstract

Sensor networks are an exciting new kind
of computer system. Consisting of a large
number of tiny, cheap computational de-
vices physically distributed in an environ-
ment, they gather and process data about the
environment in real time. One of the central
questions in sensor networks is what to do
with the data, i.e. how to reason with it and
how to communicate it. This paper argues
that the lessons of the UAI community, in
particular that one should produce and com-
municate beliefs rather than raw sensor val-
ues, are highly relevant to sensor networks.
We contend that loopy belief propagation is
particularly well suited to communicating be-
liefs in sensor networks, due to its compact
implementation and distributed nature. We
investigate the ability of loopy belief propa-
gation to function under the stressful condi-
tions likely to prevail in sensor networks. Our
experiments show that it performs well and
degrades gracefully. It converges to appropri-
ate beliefs even in highly asynchronous set-
tings where some nodes communicate far less
frequently than others; it continues to func-
tion if some nodes fail to participate in the
propagation process; and it can track changes
in the environment that occur while beliefs
are propagating. As a result, we believe that
sensor networks present an important appli-
cation opportunity for UAIL

1 Introduction

Sensor networks are an exciting new kind of computer
system. They consist of a large number of tiny, cheap
computational devices distributed in an environment.
The devices gather data from the environment in real
time. Some data processing occurs in real time within
the network itself; other data is shipped to a server
for offline processing. In some cases the devices react

online to the state of the environment.

One of the central questions in sensor networks is
what to do with the data. When the data is to be
processed online within the network, what form should
the information take, how should it be computed, and
how should it be communicated? When nodes need
to react to the information online, how can we ensure
that each node receives the information it needs? In
addition, how should the overall flow of information
be organized? All this needs to be accomplished at
minimal cost and in a distributed fashion.

Consider, for example, the task of monitoring a
building for outbreak of fire. A set of temperature
sensors will be deployed throughout a building. Ac-
curately detecting fire requires combining information
from multiple sensors. For example, if a fire breaks
out midway between two sensors, combining slightly
elevated temperature readings at each of the sensors
can provide a much quicker response than waiting un-
til a single sensor has a very high reading. In addition,
sensors that are physically deployed for a long time in
an environment are subject to multiple kinds of fail-
ure. They may provide noisy readings, or they may
break down completely. Combining information from
multiple sensors can overcome these types of failure.
In this application, we would like an immediate online
response to occur as soon as a fire is strongly believed
to be happening. Ideally, the sensor information would
be combined online, to produce a quick and accurate
response. How is this to be done?

This paper argues that the UAI community can pro-
vide good answers to these questions. In many appli-
cations, like fire monitoring, the key task is to form
beliefs about the state of the system based on the
collected sensor readings. Since the environments in
which sensor networks are deployed typically have a
great deal of uncertainty, this is a core UAI task.

In particular, we argue that loopy belief propagation
(LBP) is an ideal computational and communication
framework for sensor networks. LBP has emerged as
one of the leading methods for approximate inference
in graphical models. It has properties that make it

naturally suited for the sensor network domain. It can
easily be implemented as a distributed algorithm, and
the processing performed at each node is very simple
and can be implemented cheaply in a tiny device.

The sensor network application presents many chal-
lenges to the LBP framework that have not been en-
countered in previous applications. We investigate ex-
perimentally whether LBP is able to withstand some of
these challenges. First, algorithms for sensor networks
should be asynchronous. Attempting to enforce syn-
chrony and a particular order of processing would be
costly, and could lead to a loss of robustness if one step
of processing fails. The first step of our investigation
is to confirm that LBP does not rely on a synchro-
nized order of message passing, but works just as well
in an asynchronous environment in which each node
communicates intermittently. Second, sensor networks
often consist of devices of vastly different size and com-
putational capability, and in addition the devices de-
ployed in a physical system may be at very different
levels of functionality. As a result, we would expect
that in a deployed system, there will be nodes that
compute and communicate far more frequently than
others. We show that LBP continues to perform well
even in highly asynchronous systems with vastly dif-
ferent communication rates. Third, nodes in a sensor
network are subject to failure. Good sensor networks
are designed with redundancy to allow for such fail-
ure. We show that LBP can exploit such redundancy
to perform well even as nodes fail, and that it enjoys a
graceful degradation property. Fourth, in LBP, beliefs
gradually converge to the correct beliefs after a change
in sensor readings. In a dynamic setting, it is possible
that the environment might change again before the
beliefs have had a chance to converge. One might sus-
pect that this would lead to an unstable system, where
the beliefs never track the truth. We show that this is
not the case, and that LBP continues to perform well
even when we expect many environmental changes to
occur in the time it takes beliefs to converge.

As a result of our experiments, we assert that LBP
is a strong candidate to be a basis for computation and
communication in sensor networks. It is semantically
well founded, computing correct beliefs from sensor
readings, relative to a probabilistic model. It is simple
enough to be deployed in a wide variety of domains.
Most important, it enjoys a number of properties that
allow it to cope with the stresses of deployment in a
dynamic system subject to various kinds of failure.

2 Sensor Networks

The push toward sensor networks has been driven by
advances in hardware [9]. Silicon devices can be made
smaller and cheaper than ever before. As a result, one
can now envision systems that rely on hundreds, thou-
sands or even more of these devices. These systems

require a totally new approach to large-scale comput-
ing. On the one hand, they are much more tightly in-
tegrated with the environment than previous systems.
Instead of relying on a small number of interfaces, ev-
ery tiny piece of the system is embedded with and in
contact with the environment. On the other hand,
they rely fundamentally on computation being done
by a large number of distributed devices that individu-
ally have limited capability. The level of devices varies
from low-power, low-functionality devices to those that
use a small operating system such as TinyOS [4] to
achieve a reasonable level of computational capabil-
ity. Algorithms for these devices must be implemented
very cheaply, perhaps directly in hardware.

Sensor networks have a wide variety of potential ap-
plications. One type of application is simple data col-
lection for the purpose of offline study. For example,
one proposed network will collect data for studying
Sudden Infant Death Syndrome (SIDS) by placing sen-
sors in diapers. In such applications, where the main
purpose is collecting data for offline data mining, there
is no need for data processing to form beliefs online. In
other applications, however, the purpose is real-time
response. In addition to the fire-monitoring applica-
tion, one can consider a disaster recovery application
in which the goal is to help hospital services cope with
a large-scale disaster. More mundanely, one might
imagine a widespread, fine-grained inventory control
system. In such applications, the system would be
greatly enhanced by the ability to form beliefs online.

Another application of sensor networks has been in
the field of robotics. Decentralized sensor systems have
been used in automated navigation and tracking in a
variety of environments [2]. Such decentralized data
fusion increases the scalability, survivability and mod-
ularity of a robot by eliminating critical points of fail-
ure. Current systems rely on a distributed Kalman
filter algorithm for computing the local information at
each node. However, such an approach requires that
the network be tree-connected, which rules out many
useful applications.

The term “sensor networks” is a misnomer, since
there are many other kinds of devices in the systems.
In addition to sensors, the devices may contain ac-
tuators that exert control on the environment. One
proposed design for sensor networks, the Hourglass
architecture [12], envisions three additional kinds of
sensors: data nodes are equipped with a small amount
of stable storage and are responsible for collecting and
storing data from sensor nodes; communication nodes
are responsible communicating with the outside world,
which is a relatively expensive operation; and pro-
cessing nodes perform some computation on the data
within the network itself. The key point is that la-
bor is divided between different kinds of devices. The
sensor nodes themselves are not expected to do a lot
of processing. In this paper, we focus on the sensor

nodes that directly collect information and the pro-
cessing nodes that use the information to compute be-
liefs online. We would expect each processing node to
examine a set of sensor nodes, and communicate with
a small number of other processing nodes.

If construed in the widest sense, we can also con-
sider the term sensor network to include virtual net-
works of sensors distributed across the internet. Such
a network could be useful for internet security. For ex-
ample, one of the major current types of security prob-
lems are distributed denial-of-service (DDoS) attacks,
where an attacker floods a site with so much traffic
that it effectively cuts the site off the internet. One of
the best approaches developed thus far for combating
DDoS is pushback [5]. When a router notices traffic
passing through it above a certain threshold, it holds
up the traffic, and also notifies the upstream source.
This is only a local response. Using a sensor network
approach, one could potentially develop a global re-
sponse. Consider a system in which a small percentage
of the routers in the internet try to monitor the level of
traffic to target sites, and periodically send messages
to each other. The number of such messages would be
very small relative to the overall amount of internet
traffic, so would require very little overhead. However,
using such messages, each of the routers could form
beliefs about the existence of a DDoS attack against a
site. This would have multiple advantages. First of all,
as soon as the DDoS attack is detected, all the par-
ticipating routers could engage in pushback, greatly
increasing the effect of the response. Equally impor-
tant, the DDoS attack could potentially be detected
much sooner. Instead of having to wait for a single
node to see traffic above a high threshold, the attack
could be detected as soon as a large number of nodes
see traffic that is only somewhat above threshold. The
ideas of this paper, about using loopy belief propaga-
tion as a basis for forming and communicating beliefs,
hold equally well for such a virtual sensor network as
for a physical network.

3 Modeling a Sensor Network as a
Graphical Model

There is a great deal of uncertainty in any sensor net-
work system. For one thing, the underlying domain
exhibits uncertainty; without it, we would not need to
deploy sensor networks throughout the system. The
sensors typically give us only partial information about
the state of the system; otherwise, we would not need
to compute beliefs, we would know the answers simply
by looking at the sensors. Furthermore, the sensors
are noisy, they might be biased, and they might be
broken. In short, reasoning under uncertainty to form
coherent beliefs is a major task in sensor networks.
Each sensor individually provides a reading for a
particular state variable at a particular point. That

reading may depend not only on the system state but
also on the sensor properties. Any interaction between
sensors is assumed to be the result of high-level vari-
ables. It is the job of the processing nodes to form be-
liefs about these high-level variables from the sensor
readings, taking into account the possibility of sen-
sor error. In a complex, widely distributed system,
there will be many interacting high-level variables, and
their interactions might form a complex, loopy net-
work. Each processing node will be responsible for a
set of sensors and a small number of high-level vari-
ables. We can draw a network of processing nodes, in
which two nodes are neighbors if their high-level vari-
ables interact. We now make a key assumption: that
the the joint probability distribution over the states of
all processing nodes can be decomposed into the prod-
uct of pairwise interactions between adjacent process-
ing nodes. This might be an approximation, but we
believe that for physical systems that operate through
local interactions it will tend to be a good one.

Flre—ln Room,

Temp In—-Root

Broken(Sn)

Readlng S1) Reading(Sn)

Figure 1: Local BN for processing node

For example, suppose we have a temperature sensor
S at some location. We model READING(S) as depend-
ing on TEMP(S). In addition, S will have a certain bias
Bi1as(S) which is added to the temperature to pro-
duce No1sy(S). However, there is also a BROKEN(S)
variable; if S is completely broken, the reading will
be random. Each processing node will be responsible
for a set of sensors. The processing node will have
high-level variables TEMP-IN-ROOM representing the
ambient temperature and FIRE-IN-ROOM, a Boolean
representing whether or not there is a fire in the room.
FI1rE-IN-ROOM naturally influences TEMP-IN-ROOM,
and TEMP-IN-RoOM influences TEMP(S) at each of
the sensor locations. In addition, FIRE-IN-ROOM in-
fluences TEMP(S) because the temperature at a point
is likely to deviate more from the ambient tempera-
ture if there is a fire. FIRE-IN-ROOM also makes it
more likely that a sensor is broken. A schematic of
the Bayesian network for a single processing node is
shown in Figure 1.

In addition, the temperature in adjacent rooms is

highly correlated, as is the existence of fire. Therefore
the TEMP-IN-ROOM and FIRE-IN-ROOM variables as-
sociated with one processing node are connected to
those of neighboring processing nodes. Since the re-
lationship between adjacent processing nodes is sym-
metric, a Markov network is more appropriate than
a Bayesian network for capturing the connectivity at
this level. The relationship between two adjacent pro-
cessing nodes is modeled with a compatibility func-
tion, which will be higher the closer the values of
TEMP-IN-RoOM and FIRE-IN-ROOM between the two
nodes. The graph of processing nodes, corresponding
to the adjacency graph of locations, will be quite loopy.

The inference task in a processing node is to com-
pute the distribution over high-level variables given
sensor readings. No information need be passed back
to the sensors. The sensors do not need to be told
whether they are broken; that possibility is taken care
of at the processing node. Since the network is used for
a specific query, a technique such as Query DAGs [1]
can be used to produce a computational framework in
which the local beliefs can be computed very quickly.
Query DAGs were designed for implementation in soft-
ware or hardware for on-line, real-world applications,
and so are ideal for computing local beliefs within a
single processing node. However, they cannot be used
for the overall process of computing beliefs in sen-
sor networks, since they rely on exact inference algo-
rithms. Since the inter-processing-node network can
be quite loopy, exact algorithms are infeasible.

4 Loopy Belief Propagation

We therefore need to use an approximate inference al-
gorithm. Furthermore, we need one that can easily be
implemented in a distributed form, and that can be im-
plemented efficiently in software or hardware. Loopy
belief propagation (LBP) fits both of these criteria.

LBP is an extension of the belief propagation
framework developed by Pearl for the polytree algo-
rithm [10]. Pearl in fact emphasized the distributed
potential of the algorithm as one of its attractive prop-
erties. While the algorithm produces exact beliefs in
singly-connected networks, it does not do so in net-
works with loops. Pearl discussed the idea of running
belief propagation in loopy networks, but expressed
concern that the beliefs would not converge.

In the coding community, the hugely successful
Turbo coding scheme was developed, and it was shown
that its decoding algorithm is equivalent to running
belief propagation in a loopy network [7]. As a re-
sult of this success, there has been a resurgence of
interest in the use of LBP as a general approximate
inference algorithm for Bayesian networks. Empirical
studies [8, 11] have shown that LBP is a highly compet-
itive approximate inference algorithm. It works very
quickly, and generally producing accurate approxima-

tions to the correct beliefs. While the algorithm does
not always converge, cases of non-convergence are rel-
atively rare and can easily be detected. Meanwhile,
recent work [6] has laid the theoretical foundation for
undestanding LBP as well as pointing to generaliza-
tions. Due to its ease of implementation and strong
empirical performance, LBP is emerging as a leading
algorithm for approximate inference.

We follow [6] in our presentation of LBP. The nodes
in the algorithm are the processing nodes. The value
z; of node 7 is the state of the high-level variables of
processing node ¢. Let y; denote the sensor readings
at i, and y the complete set of sensor readings. The
complete joint distribution over the state of the sys-
tem, given the sensor readings, can be expressed as

ZHWJ Ti, Tj H‘f% (@i | yi)

where Z is a normalization constant, the first product
is taken over adjacent nodes, 1);; is the compatibility
function between nodes ¢ and j, while ¢; represents
the effect of the local sensors on the belief in node 1,
as computed by the BN in node i. In LBP, each node
i sends a message m;; to each of its neighbors j, and
updates its beliefs b; based on the messages it receives
from its neighbors. The update rules are:

<« az%, Tiy Tj ¢z Z; | yz

P(zy,...,on |y) =

H Mk xz

kEN(i)\J

bi(ws) agiily) [muil=)

kEN(3)

mij(x;)

where « is a normalization constant, N (i) denotes the
neighbors of 4, and N(i)\j denotes the neighbors of ¢
except for j. The belief at a node takes into account
the local evidence at the node, and the messages sent
to it by all its neighbors. The message a node i sends to
its neighbor j tells j which values it thinks are likely for
zj, based on what 4 thinks is likely for z; as a result of
its local evidence and messages from other neighbors,
and the compatibility between z; and x;.

5 Asynchronous Behavior

Since LBP is defined in terms of local update rules,
it can easily be implemented in a distributed fashion.
Furthermore, the algorithm requires only a simple set
of multiplications and additions which can easily be
implemented on a tiny device. In addition, the algo-
rithm as formulated does not rely on any coordination
of the messages. Each node can update its own beliefs
and the messages it sends to its neighbors at any time,
using the most recently sent messages from its neigh-
bors. In practice, however, implementations of LBP
on sequential computers have been synchronous. The
simplest way to run LBP on a sequential machine is for
nodes to take turns updating and sending messages.

While there was no reason in principle to believe
that LBP would not work equally well in an asyn-
chronous environment, the possibility existed that the
surprising convergence of LBP relied on an organized
propagation schedule. If that was the case, any at-
tempt to apply LBP to sensor networks would be
doomed to failure. We therefore began our experimen-
tal investigations by determining whether the conver-
gence properties found in previous experiments held
up for an asynchronous implementation.

We performed experiments using two real-world
Bayesian networks, ALARM and HAILFINDER [3],
and a synthetic sensor network called FIRESENSOR
based on the fire monitoring model described in Sec-
tion 3. The two real-world nets are fairly small — 37
and 56 nodes, respectively, while FIRESENSOR con-
sists of 680 nodes modelling one hundred identical sen-
sor clusters connected in a 10x10 lattice. In each ex-
periment, between 0 and 20% of the nodes were ran-
domly assigned an observed value. We found that in all
three networks, LBP continues to perform well under
asynchronous conditions. In particular, asynchronous
LBP converged whenever the synchronous version did,
and to the same beliefs.

Next, we investigated whether LBP was robust to
wide variations in the rate at which nodes communi-
cated. A typical sensor network will consist of devices
of very different levels of capability, that compute and
communicate at very different rates. Furthermore, de-
vices in a deployed system will tend to adjust their
computational performance to circumstances. For ex-
ample, as a device loses power it will tend to com-
municate less frequently. In addition, it may be more
difficult for one device to communicate to another for
environmental reasons. For instance, if there is a lot
of interference the signal from a device may only be
picked up intermittently. We can model this situa-
tion as one in which the device communicates less fre-
quently. For a variety of reasons, then, we can expect
communication in a sensor network to happen at very
different rates. LBP relies on all the nodes updat-
ing their beliefs and communicating messages to their
neighbors. Is it able to cope with different rates of
communication?

To answer this question, we ran experiments in
which half the nodes in the network are much more
likely to propagate than the other half. Each node
used a exponential random process to determine when
to pass messages to its neighbors. In a typical ex-
periment, half the nodes were 10 times more likely
to propagate than the others. Other ratios were also
tested with similar results. We found that in all cases,
asynchronous belief propagation with different propa-
gation rates converged to the correct beliefs whenever
ordinary LBP did.

In addition, the asynchronous cases perform much
better than expected in terms of the number of propa-

1100 22000

1000 4 20000 E
900 4 18000 |- 4
800 4 16000 |- 4
700 4 14000 |- 4
600 4

12000 —

500 B 10000 B

Propagations
Propagations

400 B 8000 1

300 } — 6000 } —

200 B 4000 B

100 - B 2000 B
I

ols u_ N S U N obls u N

ALARM (37 nodes) HAILFINDER (56 nodes) FIRESENSOR (680 nodes)
Figure 2: Convergence performance in synchronous,
uniform asynchronous, and non-uniform asynchronous
networks

gations required for beliefs to converge. For instance,
it might take cn propagations for the network to con-
verge in the nondistributed algorithm, where the con-
stant ¢ depends on the topological characteristics of
the network — for instance, how many times messages
must pass around a loop before its constituent nodes’
beliefs converge. We might expect, based on this,
that all nodes need to propagate about c¢ times to
achieve convergence. If this is the case, basic prob-
ability tells us that for an asynchronous network with
uniform propagation times, it would take an expected
cnlnn propagations to converge. Figure 2 shows a
comparison of the number of propagation times re-
quired until convergence for synchronous LBP, asyn-
chronous LBP with uniform propagation times, and
asynchronous LBP with different propagation times.
For each test network and each algorithm, the graph
shows the minimum, maximum and median number of
propagations required until convergence. In general,
we see that the uniform asynchronous LBP uses only
% as many propagations as we might expect. This indi-
cates that some nodes can underreport and the correct
beliefs are still reached.

As for LBP with different propagation times, while
the total number of propagations required is signifi-
cantly more than for synchronous LBP, it is far less
than one would expect if the slow-propagating nodes
had to propagate ¢ times in order for beliefs to con-
verge. In a network in which half the nodes propagate
10 times more often than others, we would expect the
total number of propagations required for the slow-
propagating nodes to propagate ¢ times to be about 5
times as high as for a uniform network. In fact we find
performance to be much better. For example, in the
FIRESENSOR network the median number of prop-
agations in the non-uniform case is 16,000, compared
to 6,000 for the uniform case. It must be that by con-
tinuing to propagate, the fast-propagating nodes are

“working overtime” and making up for some of the lack
of propagation of the slow-propagating nodes. This is
a nice property: as some of the nodes in the network
slow down, they only partially slow down the network
as a whole. We also discovered that the speed of con-
vergence varies widely based on which nodes propagate
often. Nodes that are centrally located and have large
impact on the network also have a profound effect on
inference speed. For example, if the 10 most highly-
connected nodes (meaning the ones with the most par-
ents and children) of the ALARM network are set to
propagate three times as often as the rest of the nodes
in the network, this distributed, asynchronous process
converges in just about the same number of steps as
the synchronous LBP algorithm. These results sug-
gest that, when building sensor networks, identifying
central nodes and applying resources to increase their
speed would have a disproportionate positive effect on
overall system performance.

6 Robustness to Failure

The fact that networks continue to converge even when
certain nodes participate markedly less often than oth-
ers leads to the natural question of how such networks
perform when some nodes fail to participate at all. In
a distributed system of simple devices, some will fail,
and one would hope that such failures are not fatal.
One can distinguish between different kinds of failures,
corresponding to different kinds of nodes. Failure of
sensor nodes are handled naturally in the probabilis-
tic model by the BROKEN variables. This is a familiar
kind of failure in probabilistic reasoning. Less familiar,
however, is failure of propagation nodes, which results
in nodes ceasing to participate in the belief propaga-
tion process. Not only do they not form beliefs about
their own state variables, they fail to send messages
to other nodes. This could potentially ruin the LBP
process. In fact, however, our experiments show that
LBP continues to function in the face of “dead” nodes
and degrades gracefully as their numbers increase.

Network topology has a profound effect on the per-
formance of loopy propagation under degraded con-
ditions. Redundancy is crucial. Without it, a single
point of failure will cause the whole system to break
down. In the limiting case, a node that bisects a
network plays a crucial role in establishing accurate
system-wide beliefs. If such a node ceases to function,
then evidence on one side of the network cannot affect
beliefs on the other side, and neither subnetwork can
arrive at accurate beliefs. However, as long as at least
one alternate path for information flow exists, infer-
ence is remarkably resilient.

We performed two sets of experiments with our syn-
thetic sensor network to study the effects of node
degradation. In the first, we randomly selected sen-
sors, from 2 to 20 out of the 100 in the total net-

30

28 1

26 —

2 1

22 —

20 —

Erroneous nodes (%)

18 | B

16 —

14 4

12 B

10 L L L
0 5 10 15 20

Failed sensor clusters

Figure 3: Network degradation resulting from random
sensor failures

work. We rendered them inoperable, then compared
the beliefs of working nodes to their counterparts in a
fully functional converged network. We randomly as-
signed observations to 10% of the nodes, choosing from
among the working ones. We identified the number of
nodes in the degraded network that differed from the
values produced by the fully operational one, and de-
termined the magnitude of the belief difference.

Figure 3 shows the performance degradation as the
number of failed nodes increases. With two sensors
nonfunctional, only nodes directly connected to the
problem sensors show any errors at all, about 12% of
the total network. As more nodes go offline, the num-
ber of affected nodes increases, but even with a fifth
of the nodes dead, nearly two thirds of the network
remains untouched by the problems.

Most of the nodes in a degraded sensor network re-
main completely reliable. The affected nodes, on the
other hand, can be somewhat off the mark, but their
beliefs still tend in the right direction. Somewhat un-
expectedly (but presumably coincidentally), the aver-
age absolute belief error among the affected nodes re-
mains almost perfectly constant as the number of dead
sensors increases — right around 13%. The largest er-
rors are found in nodes close to dead sensors and far
from any observed evidence; the smallest are in those
nodes strongly influenced by observations.

It is not surprising that nodes neighboring broken
ones should have somewhat degraded performance,
since they lose crucial information in forming their
beliefs. It is also not surprising that nodes far away
from observations should be more seriously affected
than those close to them, since such nodes depend
more heavily on their broken neighbor. What is per-
haps more surprising is that the degradation does not
spread in a significant way to neighboring nodes be-
yond the affected nodes. The beliefs at the erroneous
nodes are accurate enough that their neighbors are
able to obtain most of the information they need. Thus

60

50

40

30

Erroneous nodes (%)

10 |

Failed sensor clusters

Figure 4: Network degradation resulting from path-
blocking failures

loopy belief propagation has a highly appealing grace-
ful degradation property. Not only is the degradation
local as nodes in the network fail, but it dissipates very
quickly as one moves away from the failed nodes.

We ran a similar experiment on a variation of FIRE-

SENSOR in which the processing nodes were con-
nected in the following pattern:

o3l o3l
o3l sl

The network was designed to look like a plausible
floor-plan for a building, which might not have as
much redundancy as the complete lattice. Results
were similar in nature to FIRESENSOR, and only
slightly worse, due to the increased probability that
knocking out a few nodes will block all paths from one
side of the network to the other.

We designed our second set of experiments to ex-
plore the importance of redundant propagation paths
in maintaining accurate beliefs, and the results are
summarized in Figure 4. Instead of choosing nodes
randomly, we removed one sensor at a time from the
fifth row of the 10x10 network, so that the number of
communication paths between the bottom and the top
of the network steadily decreased. Just as in the last
experiment, we measured the total number of nodes
with incorrect beliefs at convergence. Until we killed
the eighth node, leaving only two paths, the system’s
performance did not differ significantly from the ran-
dom case. Even then, the number of affected nodes
was only marginally worse, by about 10%. Of course,
once all ten nodes in a row fail, error becomes extreme
— only nodes whose beliefs are entirely determined by
local observations reach correct beliefs. Thus individ-
ual messages between nodes in loopy propagation seem
to encode an enormous amount of information about
the state of large swaths of network — as long as a path
exists, beliefs will flow.

60

4 s0l

Erroneous nodes (%)

L %

s TS
1 108 x’&«

A

15
z

16 47 48 49
Timesteps

Timesteps

Figure 5: Convergence performance at propagation
speeds relative to environmental change

7 Dynamic Behavior

Sensor networks are not static entities; their whole
function is to change and adapt to fluctuations in
the environment they are measuring. Although asyn-
chronous networks propagate beliefs quickly and effi-
ciently, they cannot do so instantaneously. If the envi-
ronment is changing rapidly, we may encounter situa-
tions in which it changes several times in the time nec-
essary for beliefs to converge. As a result, the whole
belief propagation process could potentially become
unstable. We performed experiments testing LBPs
ability to adapt in a dynamically changing environ-
ment. Happily, we found that even when nodes make
and change observations in the midst of loopy propa-
gation’s flurry of messages, a system’s overall beliefs
continue to converge to accurate values.

In our experiments, we varied the rate of environ-
mental change as a function of propagation time. We
define a time step to be the mean propagation interval
for each node, using an exponential random propaga-
tion model with a uniform mean across all of the nodes.
At each time step, every node has a small chance of
making a fresh observation. We simulated runs of the
system, and measured performance as follows. Every
% of a time step, we determined the number of nodes
whose beliefs differ from what they would be if the net-
work had enough time to converge fully with a given
set of observations. We compare the beliefs to those
that would be obtained with an “instantaneous” LBP,
rather than the true correct beliefs. This provides a
measure of the error in the system due to slow conver-
gence, as opposed to error due to the LBP approxima-
tion. To obtain an overall measure of performance we
averaged this error over different time points.

Suppose that at each time step, each node makes a
fresh observation with probability of p. Then there will
be np environmental changes in each time step. For
example, we found that for FIRESENSOR the network
converges fully at nearly every time step if p = 0.005.

Since the network has 680 nodes, over 3 environmental
changes happen at every time step. Since this network
ordinarily converges in 9 time steps with no environ-
mental changes, about 30 such changes happen in the
convergence time of the network. Nevertheless, the
network has very low error in steady state. Even when
environmental changes occur 10 times more rapidly,
only about 20% of the network holds incorrect beliefs
at any particular time step.

Figure 5 shows the percentage of incorrect nodes in
the sensor network over time at various rates of envi-
ronmental change. We see that after a short burn-in
period, in which the beliefs converge from their initial
random settings, the percentage of incorrect nodes re-
mains fairly stable in steady state. We conclude that
LBP performs well even as the environment changes
rapidly. Furthermore, it remains stable as the the
speed of environmental change increases, with graceful
degradation in performance.

8 Conclusion

We view the contributions of this paper as threefold.
The first is to identify sensor networks as a fitting ap-
plication area for probabilistic reasoning technology.
Sensor networks are an exciting and growing field, and
questions naturally arise there that have been studied
by UALI researchers for years.

Secondly, we identified LBP as a particularly appro-
priate technology for sensor networks. It is fast and
has shown to generally produce accurate results. It is
naturally distributed, and can easily be implemented
in an asynchronous environment. It is also very sim-
ple, and the computations required at every node can
be implemented in low-level software or hardware.

Thirdly, we have run a series of experiments to test
whether LBP can withstand the variety of stresses that
would be placed on it in a sensor network environ-
ment. LBP came through the experiments with flying
colors, in fact surpassing our expectations. It contin-
ued to perform with highly non-uniform propagation,
and in addition, required far fewer propagations than
expected. Not only did it continue to work in the pres-
ence of node failures, but problems remained confined
locally to the failure region. Stable in the face of envi-
ronmental changes, it even continues to perform when
many such changes occur during the time it takes to
converge. As a result of our experiments, we believe
that LBP is up to the task of providing a foundation
for reasoning and communication in sensor networks.

One issue not addressed in this paper is modeling
the system dynamics. Our graphical model is a snap-
shot model of the state of the system at a particular
point in time, and does not model changes in the state.
While we have shown that beliefs in the static model
are able to adapt to changes in the environment, we
might do better by explicitly modeling and reasoning

about such changes, using a representation such as a
dynamic Bayesian network. Extending our framework
to such models is a topic for future work.

Acknowledgements

We would like to thank Margo Seltzer for discussions
on sensor networks. This work was sponsored by ARO
grant DAAD19-01-1-1610.

References

[1] A. Darwiche and G. Provan. Query DAGs:
A practical paradigm for implementing belief-
network inference. JAIR, 6:147-176, 1997.

[2] H.F. Durrant-Whyte and M. Stevens. Data fusion
in decentralized sensing networks. In 4th Interna-
tional Conference on Information Fusion, 2001.

[3] G. Elidan. Bayesian network repository.
http://www.cs.huji.ac.il/labs/compbio/Repository.

[4] J. Hill, R. Szewczyk, A. Woo, W. Hollar,
D. Culler, and K. Pister. System architecture
directions for network sensors. In Architectural

Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2000.

[5] J. Ioannidis and S. M. Bellovin. Implementing
pushback: Router-based defense against DDoS
attacks. In Network and Distributed System Se-
curity (NDSS), 2002.

[6] W.T. Freeman J.S. Yedidia and Y. Weiss. Gener-
alized belief propagation. In NIPS, 2000.

[7] R.J. McEliece, D.J.C. Mackay, and J.F. Cheng.
Turbo decoding as an instance of Pearl’s belief
propagation algorithm. IEEE Journal on Selected
Areas in Communication, 16(2):140-152, 1998.

[8] K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy
belief propagation for approximate inference: An
empirical study. In UAI 1999.

[9] Committee on Networked Systems of Embed-
ded Computers. Embedded Everywhere : A Re-
search Agenda for Networked Systems of Embed-
ded Computers. Computer Science and Telecom-
munications Board, National Research Council,
2001.

[10] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[11] R. Dechter R. Mateescu and K. Kask. Tree ap-
proximation for belief updating. In AAAI 2002.

[12] J. Shneidman, B. Choi, and M. Seltzer. Collect-
ing data for one hundred years. Technical report,
Division of Engineering and Applied Science, Har-
vard University, 2002. Fall 2002 Work in Progress
Description.

