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Abstract—In this article, we demonstrate the ability to recognize
hand gestures in a noncontact wireless fashion using only inco-
herent light signals reflected from a human subject. Fundamen-
tally distinguished from radar, lidar, and camera-based sensing
systems, this sensing modality uses only a low-cost light source
(e.g., LED) and a sensor (e.g., photodetector). The lightwave-based
gesture recognition system identifies different gestures from the
variations in light intensity reflected from the subject’s hand within
a short (20–35 cm) range. As users perform different gestures,
scattered light forms unique, statistically repeatable, time-domain
signatures. These signatures can be learned by repeated sampling to
obtain the training model against which unknown gesture signals
are tested and categorized. These time-domain variations of the
lightwave signals reflected from hand are denoised, standardized,
and then classified by using machine learning classification tools
such as K-nearest neighbors and support vector machine. Perfor-
mance evaluations have been conducted with eight gestures, five
subjects, different distances and lighting conditions, and visible
and infrared light sources. The results demonstrate the best hand
gesture recognition performance of infrared sensing at 20 cm with
an average of 96% accuracy. The developed gesture recognition sys-
tem is low-cost, effective, and noncontact technology for numerous
human–computer interaction applications.

Index Terms—Gesture recognition, human–computer
interaction (HCI), LiDAR, lightwave sensing (LWS), noncontact
sensing, RADAR, signal classification, visible light sensing.

I. INTRODUCTION

W ITH the growth of the computer and communication
industries, Internet of Things, and the application of

computers in medicine, human–computer interaction (HCI) is
becoming an increasingly important technological discipline.
HCI research is crucial for creating complex computerized sys-
tems that can be operated intuitively and efficiently by people
without any formal training. Ideally, it leverages existing and
familiar human experiences to make software and devices more
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comprehensible and usable. Well-designed HCI interfaces make
it convenient to control machines for education, labor, com-
munication, and entertainment environments [1]. Such efforts
have gained much attention in recent years. For example, virtual
reality allows employees to better understand the nature of their
work, especially when it is in an unfamiliar domain. Speech,
gesture, and handwriting recognition are also highly effective,
since they leverage common activities of everyday life. As such,
they are important topics in applied HCI research [2], [3]. Hand
gesture recognition is another natural choice for HCI. Simple
movements of the hand can represent a type of sign language
to machines resulting in the execution of complex actions. As a
result, the recognition of hand gestures as a connection between
humans and computers is now an active research area [4].

Existing hand gesture recognition techniques can be classified
into two groups: wearable sensing and remote (noncontact) sens-
ing. In wearable sensing, the user literally wears the sensor(s),
which may be installed on a glove or otherwise attached to the
hand. While this sensing mode is both stable and responsive,
the sensor(s) must be worn whenever hand movement is to be
detected. This inconvenience strips away some of the advantages
of wearable sensing. In general, although wearable sensing has
higher accuracy, it is simply too inconvenient for many potential
users [5]–[8].

In remote sensing, hand gestures are perceived without any
special hardware attached to the hand. The most frequently used
sensors utilize radio frequency (RF) waves, cameras, and sound
waves. The hand gesture or body motion can be identified by
monitoring changes in received signals such as Doppler shifts,
signal intensities, or image sequences [9]. Research on using
reflected RF signals (radar) for gesture recognition is relatively
mature. In [10]–[12], the authors use the received signal strength
along with measured phase differences of the received signals
as features to identify gestures. In [12], Google presents Soli,
the first end-to-end fine gesture recognition and tracking system
for HCI using a millimeter-wave radar. Soli consists of a system
of multiple millimeter-wave radar transmitters and receivers.
The RF-based gesture recognition method is prone to have
electromagnetic interference and electromagnetic compatibility
issues [13], [14].

In imaging-based gesture recognition systems, the input data
are images (2-D or 3-D) and/or videos. The main challenges
are separating the objects from the background and feature
extraction [15], [16]. Deep-learning-based image classification
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Fig. 1. Functional overview of LWS-based gesture recognition system.

has attracted much attention with the development of ubiquitous
computing power over the past several years. However, deep
learning methods usually work with a large amount of training
samples and the data need to be labeled [17], [18]. Coupled
with the large storage and processing requirements of images
and videos, this increases the difficulty and complexity of this
method. Meanwhile, security and privacy issues also must be
taken into consideration [19], [20].

Sound-based sensing systems utilize ultrasonic waves and
measure the Doppler shift of those waves reflected by the objects.
The velocity of a moving hand, for example, causes characteris-
tic Doppler shifts that serve as a signature to identify activities.
The sound-based system is not susceptible to environmental
noise and has good accuracy even using an uncomplicated
classification algorithm [21], [22]. Adults cannot hear the ultra-
sonic frequency and, therefore, will not be disturbed. However,
the frequencies employed may harm or perturb children and
pets [23].

The general strategy of using light for sensing has attracted
much attention recently due to the advancements in light-
emitting diodes (LEDs), which now provide unprecedented
illumination efficiency and lifetime [24]. In addition, light can
be sensed using simple and inexpensive photodetectors or solar
cells. Light signals, in general, require less processing capa-
bility and system complexity, compared to RF systems. They
also suffer far less from cross-technology interference, owing
to the increasing number of RF appliances sharing the same
standardized spectrum. Visible light has already been applied to
occupation estimation by analyzing the distribution of reflected
and shaded signals [25]. Objects cast shadows by blocking parts
of the light beams from light sources. The shape of a shadow
can also be regarded as the pattern in gesture identification [9],
[26]. In [27], Li et al. propose a shadow-based hand pose
reconstructing system. There are multiple photodiodes placed
in the bottom; the binary blockage maps are obtained when the
hand gesture blocked the light signal right above the sensors. The
hand features are extracted from the blockage maps to build the
hand skeleton model to realize the hand gesture recognition and
tracking. Visible light sensing can be applied to detect and iden-
tify body and arm gestures based on placing multiple receivers
(photodiodes) on the floor or ceiling. However, the interference
from obstacles between the body and the receiver becomes a
critical issue in the shadow-based implementation. Therefore,

lightwave sensing (LWS) over shorter distances becomes attrac-
tive. Indeed, it appears in many ways that the analysis of signals
from reflected light is better suited to application involving small
distances [28], [29]. In [30], Gong et al. utilize the infrared
light sensing to recognize six gestures within 0.5–7 cm. In [31],
Li et al. propose a self-powered gesture recognition sys-
tem, which combines the received visible light signals with
setting position. It is a low-cost, highly accurate, and sta-
ble gesture recognition system within a 0.5–3 cm sensing
distance.

Based on the existing light-based gesture recognition re-
search, we have developed, for the first time to our knowledge,
hand gesture recognition utilizing reflected lightwave (infrared
and visible) signals. Fig. 1 depicts our LWS system. The main
functional components include the LWS hardware, signal pro-
cessing algorithms, and classification algorithms. LED light
sources are used to illuminate the hand. The reflected inten-
sity of the light varies with the movement of the hand and is
captured and converted into an electrical current by a commer-
cially available photodetector. The time-domain variations of
the received (raw) signals are: 1) denoised by using discrete
wavelet transform (DWT); 2) standardized by using Z score
standardization; and 3) classified by using machine learning
tools such as K-nearest neighbors (KNN) and support vector
machine (SVM), which are trained by prior captured datasets.
With this modality, we can distinguish different hand gestures
with accuracy up to 96%.

Our contributions in this study can thus be summarized as
follows.

1) A novel LWS-based hand gesture recognition system has
been developed.

2) The gesture recognition system has been implemented in
hardware and software subassemblies.

3) The performance comparison of machine learning classi-
fication methods KNN and SVM has been conducted.

4) A comparison between LWS using visible and infrared
light has been performed.

5) A system performance summary (classification confusion
matrix) has been generated for different distances and
environmental lighting conditions.

The remainder of this article is organized as follows. Section II
presents the principles and system design, both in terms of hard-
ware and software algorithms utilized. Section III presents the
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Fig. 2. Spectral reflectance variability of human skin (regenerated from NIST
study [32]).

evaluation of the LWS system and some brief related discussion.
Finally, Section IV concludes this article.

II. SYSTEM DESIGN AND IMPLEMENTATION

A. Influence of the Reflectance Spectrum

The spectral reflectance of human skin offers unique op-
portunities for noncontact sensing applications. Indeed, it can
serve as an identifying signature. For example, imaging a human
face with hyperspectral cameras provides very broad reflectance
spectra, which can be divided into numerous narrow bands.
Each of these can be used to increase the accuracy of face
recognition. A National Institute of Standards and Technology
(NIST) project collected measurements from 28 human subjects
and calculated the spectra for their reflectance measurements
over the 250–2500 nm wavelength range [32]. Fig. 2 shows
the reflectance spectrum for the mean of all the samples. The
spectrum exhibits the variations and scales of reflectance factors,
which are critical for the aforementioned applications. While
hyperspectral information is not required for hand gesture recog-
nition, it does indicate what wavelengths LWS might be imple-
mented at most effectively. In hand gesture recognition, higher
reflectance translates to a larger reflected light intensity for a
fixed power level. This feature is beneficial to achieving greater
dynamic range in sensing and to reducing power consumption.
From the NIST spectrum, the visible/infrared wavelength range
of 600–1200 nm has the most significant reflectance. Hence, we
began LWS using visible and invisible infrared light sources.

B. Sensing Hardware

Our hardware schematic is shown in Fig. 3, and the experi-
mental setup is shown in Fig. 4. The LWS hardware consisted
of one photodetector as a receiver, a digital signal processing
unit to convert analog data to digital modality, light sources
(visible or infrared) as transmitters, and finally an electronic unit
that could process and store the received digital data. The light
sources consisted of visible and infrared LEDs. The infrared
light source was invisible 940 nm IR lamp board with light

Fig. 3. Hardware overview of the LWS-based system.

Fig. 4. Experimental setup of our LWS system.

sensor (48 black LED illuminator array) having 30 ft range
and 120◦ wide angle beam [33]. The visible light source was
25 white 5 mm LED arrays [34]. A Raspberry Pi miniature
computer with a PiPlate ADC circuit handled the data collec-
tion and digitization. A commercial photodetector served as
the detector. The photodetector was Thorlabs PDA100A with
spectrum responsivity 340–1100 nm, bandwidth 2.4 MHz, and
area 100 mm2[35]. The gain of the PDA100A was the same in
the visible and infrared measurements (20 dB) in this article.

C. Measurement Procedure Overview

In operation, volunteers perform gestures at a distance d in
front of the receiver (and transmitter). As the hand makes dif-
ferent gestures, the photodetector records light intensity waves
that are unique according to the changing distance, shape, and

Authorized licensed use limited to: Oklahoma State University. Downloaded on April 28,2021 at 18:13:34 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: GESTURE RECOGNITION USING REFLECTED VISIBLE AND INFRARED LIGHTWAVE SIGNALS 47

Fig. 5. Gesture set. (a) Finger slide. (b) Push. (c) Far away from the sensor.
(d) Sweep from right to left. (e) Palm hold. (f) Circle. (g) Palm tilt. (h) Pinch
pinky.

scattering cross section of the subject’s hand. The transmitter is
pointed such that the hand is centered in the brightest part of
the transmitter’s beam. This was visibly obvious in case of the
visible light source, whereas an infrared monitor was used to
optimize aiming while using the infrared source.

Volunteers were asked to perform gestures (see Fig. 5) in the
designated area in front of the photodetector and light source.
Each gesture could be finished in 2–3 s but was recorded for 6 s at
a sampling rate of 100 Hz, resulting in individual gesture datasets
of approximately 600 bytes (single precision). The digital data
were then processed and classified offline using the algorithms
mentioned in the next subsections. A video that shows the en-
vironments, experimental setup and the data collection process
was taken (see video link at https://youtu.be/OStciFfvZa0).

D. Signal Processing

In order to extract the patterns and important signal features
resulting from different gestures, and to remove redundant in-
formation and noise from the received signal, multiple signal
processing algorithms are needed. A flow diagram of the se-
quential operations performed on the raw data is presented in
Fig. 6. First, discrete wavelet denoising was used for noise and
interference removal. Then, a simple thresholding scheme was
used to segment the long received data stream and mark the be-
ginning and the end of a hand gesture. Then, Z scores were used
to standardize the signal amplitude based on the variance of the
data. This normalized the data collected in varying distance and
background lighting conditions. Finally, the data were classified
to a certain gesture based on the database of available gestures.
Each algorithm is explained in detail as follows.

1) System Noise and Denoising: The raw signal is usually
corrupted by noise that distorts the significant signal features,
especially when the amplitude of the reflected signal is relatively
low. Two noise features that were obvious in the frequency
domain appear to be due to the flicker of ceiling lights, evident at
120 Hz, and the flicker of nearby computer monitors, evident at
60 Hz. The magnitude of the Fourier transform of the received
signal is shown in Fig. 7. The flicker noise sources appear as

Fig. 6. Flow diagram of the steps and algorithms used to prepare measured
data for gesture classification.

Fig. 7. Power spectrum of the received visible light signal at 20 cm before and
after discrete wavelet denoising block.

peaks at 20 Hz (for the 120 Hz signal) and 40 Hz (for the 60 Hz
signal) due to spectral folding caused by the 100 Hz sampling
rate being below the Nyquist criterion.

In order to denoise the signal, the DWT was used [36]. The
wavelet thresholding method has been proven remarkably adept
in signal denoising in various published research works, includ-
ing electrocardiogram (ECG) denoising [37]. The ECG signal is
similar to our gesture data in that the heart activities are variable
with time on similar scales and indicate different health states
based on the various time-domain waves. The DWT is highly
useful in analyzing nonstationary signals since it provides both
a time- and frequency-domain representation of the signal [38].

2) Discrete Wavelet Denoising: The wavelet thresholding
method removed the noise by forcing the DWT coefficients
of noise to zero. Coefficients of noise were distinguished from
those of the meaningful part of the signal by their relatively
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Fig. 8. Denoised wave of received visible light signal at 20 cm with four
thresholding methods.

small magnitude. Wavelet thresholding means that each DWT
coefficient is compared to a threshold to determine whether it
is a part of the desired signal or not. Thresholding is usually
applied to the DWT detail coefficients, which are related to
high-frequency noise. When the value of a coefficient was found
to be less than the threshold, it was forced to zero. Following this
operation, the inverse wavelet transformation used the remaining
nonzero coefficients to produce the denoised signal. Coefficients
larger than the threshold were dealt with differently according
to the thresholding scheme employed, whether it was “soft”
and “hard.” More details of these two thresholding methods are
available in [39]. We applied soft thresholding in our method.
We have empirically observed that soft thresholding produces a
more mathematically tractable signal, and also one that is easier
to interpret visually. Specifically, the soft method eliminates
certain signal “blips” that survive with hard thresholding.

Determining the proper threshold value is an important detail
in the denoising process. A large threshold may oversmooth the
recovered signal, losing important time-domain detail informa-
tion. A threshold that is too small cannot effectively eliminate
the noise. An appropriate threshold should be selected to bal-
ance these competing requirements. Donoho and Johnstone [40]
have done a large amount of research in this area. There are
two main categories: global and level-dependent thresholding.
Global thresholding employs the same threshold value for all
coefficients at every decomposition level. In level-dependent
thresholding, it is necessary to find a suitable and possibly
different threshold for each decomposition level. In [41], four
thresholding techniques were analyzed and evaluated for de-
noising performance, based on the calculation of mean square
error: rigrsure, heursure, sqtwolog, and minimaxi.
We found that therigrsure showed an optimum performance
in our case. As shown in Fig. 8, the red wave with rigrsure
principle is the smoothest one and provides the foundation of
subsequent operations. The denoising effectiveness is demon-
strated with another signal in Fig. 9.

3) Gesture Detection: Since gestures generally lasted only
2–3 s, much of the 6 s worth of collected data could be discarded.

Fig. 9. Effect of discrete wavelet denoising and simple thresholding blocks
on the time domain from received visible light signal at 20 cm.

We, therefore, needed to detect the beginning and end for every
gesture, in between which the received signal had large changes
in magnitude and shape due to hand movement. Only data be-
tween these points were forwarded for classification. Generally,
the reflected intensity becomes much larger when the user is
performing a gesture. Therefore, we used a thresholding scheme
to detect the start and end points of each gesture after the denois-
ing operation. Note that this is now a time-domain thresholding,
entirely separate from the thresholding operations used in de-
noising. We found that suitable thresholds are slightly greater
(∼10%) than the averaged measured signal intensity before the
gesture begins. The suitable thresholds were obtained based on
the received signal value without any initial hand movements
because the fluctuation of waveform could be very tiny, as shown
in Fig. 13(d), while sweeping from right to left. If we chose
the thresholds greater than 10%, the details like this would be
removed. With this threshold, we did not lose any gesture related
data, but got rid of redundant data. Thus, it was the optimal option
for the recognition accuracy. The absolute scale of this threshold
is variable based on the environmental situation and signal
intensities observed during the measurement. For example, the
average background intensity measured in a light room is larger
than in a dark room. An example of this gesture detection process
is shown on measured data by the amber dashed curve in Fig. 9.

After deleting the unusable data, we obtain a time series of
the gesture with an unpredictable number of data points. Obvi-
ously, the filtered signals will not always have the same length
at this stage. However, the follow-on classification algorithms
require that all the input data have a vectorized representation
of the same length, which allows the algorithms to efficiently
execute matrix operations in batch. Signals can be time-scaled
or zero-padded to cause their vector lengths to match. Dynamic
time warping (DTW) is a method that aligns two time series to
measure the similarities between them [42]. For example, two
signals for a same gesture with different performance speed have
similar shapes but different magnitudes or lengths. The DTW can
make them match perfectly. We can get two new time series of
same length after applying the DTW. Meanwhile, we find that
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Fig. 10. DTW result for two samples of infrared light signal at 20 cm with
different duration from the same gesture.

Fig. 11. DTW result for two samples of infrared light signal at 20 cm with
different duration from different gesture with similar wave shape.

it makes two waves with different duration from a same gesture
match very well, as shown in Fig. 10. This approach adjusts the
shape of waves to an identical one for one gesture to eliminate
the diversity from various users. This can be an advantage in the
recognition process. However, it reduces the distinctiveness for
different gestures, which have similar wave shapes because it
aligns all the waves in a similar shape, as shown in Fig. 11. In
this figure, those two waves are from two different gestures with
similar wave shapes. As can be seen, the shape of the blue wave
is changed with the red one. The dissimilarity among different
gestures is reduced through this procedure. This operation will
make all the waves, no matter whether they come from same
gestures or different gestures, have a similar shape, resulting
in error classification. Furthermore, it will damage the recogni-
tion accuracy significantly. Therefore, we found that the most

Fig. 12. Effect of Z scores normalization block on the time-domain signal
from received infrared light signal at 20 cm. (a) Waveform before standardiza-
tion. (b) Waveform after standardization.

reliable gesture recognition was accomplished by employing
zero padding to match their lengths.

4) Standardization: Due to the diversity of factors involved
when different users perform gestures, the magnitudes of mea-
sured light signals from the same gesture may be highly vari-
able, even though their wave shapes are generally similar. For
example, the distance d between a user’s hand and the receiver
affects the magnitude of the reflected signal. These variations
deteriorate the recognition accuracy. An example is shown in
Fig. 12(a). Two denoised signal plots are shown, one each of the
same gesture from two different volunteers. While the waves
have similar shapes, they have quite different magnitudes. To
solve this problem, the denoised signals must be made to have
similar magnitudes. This can be done with the Z scores method,
which compares the standard deviations (SDs) of the compared
signals. By visual inspection of the signals in Fig. 12(a), the
one with a larger magnitude also has a larger SD. Signals can,
therefore, be scaled by their SD to get similar magnitudes. Z
scores is a standardization method that simply converts a dataset
to a distribution with zero mean and unity SD. As shown in
Fig. 12(b), the two previously described waves are shown again,
after applying the Z scores standardization; they now exhibit
similar magnitudes. This method made our system agnostic to
different users and measurement conditions.

E. Classifier Training

After the signal processing is completed, all of the datasets
were used as feature vectors in a training set to build a gesture
classification method using the KNN method. We applied KNN
and SVM in our study. The recognition accuracy showed that
the KNN behaved better than SVM in the recognition of eight
gestures. Based on the data analysis, the variances of our feature
vectors were small. Due to the tiny difference and much overlap
of all the waves (as shown in Fig. 13), KNN was found to be more
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Fig. 13. Time-series waves of received infrared light signal at 20 cm with the corresponding gesture. (a) Finger slide. (b) Push. (c) Far away from the sensor. (d)
Sweep from right to left. (e) Palm hold. (f) Circle. (g) Palm tilt. (h) Pinch pinky.

suitable for our proposed system. Hand gestures were selected
based on the common HCI tasks [26], [43]. The waves shown
in Fig. 13 are the denoised time-domain signals. After data
analysis, we found that the variance of our feature vectors was
small. This could also be observed visually as relatively small
differences in the eight gestures in the time-domain waves. KNN
is a nonparametric lazy method that utilizes the distance between
each sample to separate them into several classes without any as-
sumptions in the classification and regression applications [44].
Therefore, due to the small difference and strong overlap of all
the waves, KNN was found to be more suitable for our method.

To build a training model, we collected several waves for each
gesture. As mentioned earlier, statistical results showed that the
volunteers completed the gesture movements shown in Fig. 13
in about 2–3 s. When the data collection was completed, the raw
received data were denoised, trimmed, normalized, and padded
as required and as discussed previously. Using these data, all the
feature vectors were used to train a KNN classification model
and get the best parameters for our gesture recognition system.
New waves with accurate record of gesture type were used to
test the trained model.

III. EVALUATION, RESULTS, AND DISCUSSION

In this section, we evaluate our gesture recognition system
using the collected data from real volunteers with K-fold vali-
dation. First, we discuss the data collection method and software
used. Then, we describe a K-fold validation procedure used to
evaluate the gesture classification performance with less bias.
We then present a calculated confusion matrix that classifies the
accuracy for eight different gestures and visualizes the classifi-
cation error. Furthermore, we present analysis of the gesture
classification accuracy when using different light sources at
different distances. Finally, the impact of environment lighting
conditions in gesture classification accuracy is presented.

A. Data Collection

Referring to the setup shown in Fig. 4, volunteers made hand
gestures in front of the light source. For each gesture, the 600
points were saved in the Raspberry Pi. The data collection
used Python scripting language run in PiPlate and Raspberry
Pi. The signal processing and classification algorithm using
MATLAB was applied in the PC offline based on the saved
data in Raspberry Pi.

We instructed volunteers how to perform each gesture and
gave them several minutes to practice until they were comfort-
able with each gesture. We recorded data from five volunteers
(two females of 25 and 27 years old and three males, two of
27 years old and one of 24 years old) performing 24 repetitions
of the eight gestures (960 waves) shown in Fig. 13 at distance
20 cm from the sensor for infrared source in normal indoor
room lighting conditions. There was only one window in the
room, and the curtains were always closed. The color of the
wall was white. The light of environment was from fluorescent
lights in the ceiling and computer screen. The background color,
material characteristics, distance from the gesture scene, etc., are
not expected to impact the results significantly. The background
will affect only the initial received signal value when there is no
hand movement. The signal that was useful for gesture identi-
fication was the reflected light by hand movement between the
photodetector and the background. When volunteers performed
the gesture, they could sit in front of the photodetector or stand
by the side of the photodetector and then perform the gesture in
front of the photodetector at the specific distance. The received
signals of those two situations would have small difference in
the reflected intensity. To observe the impact of ambient light,
the same number of waves was recorded at a distance of 20 cm
infrared sensing in the dark indoor room (no lighting) conditions.
Furthermore, to obtain the effect of sensing distance on accuracy,
the same number of waves was collected at a distance of 35 cm
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TABLE I
TENFOLD VALIDATION CONFUSION MATRIX OF INFRARED LWS AROUND

20 cm (AMBIENT LIGHT IS ON)

from the sensor for infrared sources in normal indoor room
lighting conditions. There were three datasets with same number
of waves for infrared sensing. The same three datasets under
same conditions were collected using the visible light source to
determine the effect of different sources on gesture recognition
performance.

B. Gesture Recognition Accuracy

In this section, we evaluate the accuracy of our system at dif-
ferent distances, with different sources, and in different ambient
lighting conditions. All the results were obtained with tenfold
cross validation to use all the data and make the parameters
fine-tuned. In tenfold cross validation, all the waves were divided
into ten equal size subsets randomly. One of the ten subsets was
taken as testing data, the remaining nine subsets were used as
training data. Then, the cross validation was repeated ten times,
and each of the ten subsets was used as the testing data only once.
Note that the datasets were divided randomly, and the model
was not supposed to be subject dependent. The training datasets
were overlapped with each other. From our results, the testing
accuracy results of ten models were not significantly different
(the SD range of those ten matrices were within 5%). Finally,
ten confusion matrices were averaged to obtain a final result. To
measure the reproducibility of the system, the accuracy result
of leave-one-subject-out validation was calculated using the
same samples. The confusion matrix of tenfold cross validation
and leave-one-subject-out validation results for infrared light
sensing around 20 cm are shown in Tables I and II. The overall
accuracy of cross-validation result was 96.13% (SD = 2.59%).
And the overall recognition result of leave-one-subject-out val-
idation was 92.13% (SD = 3.14%). This result represented a
more realistic status compared with cross-validation result.

1) Accuracy of Infrared and Visible LWS Compared at the
Same Distance (d = 20 cm and d = 35 cm): The dataset of
infrared LWS had 960 gesture waves named as infrared dataset
around 20 cm. The infrared dataset around 35 cm had the same
number of waves. The forms of the datasets for visible LWS at
20 and 35 cm were identical.

TABLE II
LEAVE-ONE-SUBJECT-OUT VALIDATION CONFUSION MATRIX OF INFRARED

LWS AROUND 20 cm (AMBIENT LIGHT IS ON)

TABLE III
CONFUSION MATRIX OF VISIBLE LWS AROUND 20 cm (AMBIENT LIGHT IS ON)

As shown in Tables I and III, the accuracy of gesture recogni-
tion at d = 20 cm is with using the infrared light than that with
the visible light.

In order to quantify this difference, we measured the light
power as a function of distance from the source using a cali-
brated optical power meter. Using Tables IV and V, “measured
radiated power” refers to power measured directly in front of the
light source at different distances. “Measured power at detector
reflected from flat hand” refers to the power measured after
reflection from a hand-held flat and normal to the source beam.
In this case, the power meter probe was placed directly in front
of the usual system photodetector. The distance refers to where
the hand was held during the power measurement. One can
observe from the tables that the infrared light power is much
larger than the visible light power. As shown in Fig. 14, the
wavelength of our visible light source is from 400 to 900 nm,
and the wavelength of our infrared light source is 940 nm.
The spectrum was obtained using an Ocean Insight USB2000+
spectrometer [45]. During measurements, the light sources, both
visible and infrared, were pointed directly at the tip of the optical
fiber that conveys light to the spectrometer. The distance between
the light sources and fiber tip, as well as pointing of the fiber
tip, was adjusted to avoid saturating the spectrometer’s detector.
Spectral data were stored by the spectrometer control software
during acquisition.
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TABLE IV
POWER MEASUREMENTS FOR INFRARED LIGHT SETUP

TABLE V
POWER MEASUREMENTS FOR VISIBLE LIGHT SETUP

Fig. 14. Measured spectrum of our infrared and visible light sources. (The
different peak levels of infrared and visible light are not necessarily indicative
of relative light intensity. The visible and infrared spectra were scaled separately
and then combined in the figure plot.)

Fig. 15. PDA100A spectrum responsivity [46].

The spectrum responsivity of the photodetector is shown in
Fig. 15, which is regenerated from the PDA100A manual [46].
Because of the larger light power and responsivity of the pho-
todetector, the infrared light generates larger voltages at the
detector. The larger voltage signals generally seem to raise the
signal-to-noise ratio (SNR) of the system, resulting in higher

Fig. 16. Accuracy results of visible LWS at 20 and 35 cm (ambient light is ON;
mean = 84.75%, SD = 2.96% for the accuracy at 20 cm; mean = 86.00%, SD
= 3.42% for the accuracy using the dataset at 20 cm as training set and dataset
at 35 cm as testing set; mean = 76.13%, SD = 4.94% for the accuracy using
the dataset at 35 cm as training set and dataset at 20 cm as testing set; and mean
= 71.13%, SD = 4.91% for the accuracy at 20 cm) with confidence interval =
0.95.

recognition precision. The results in Figs. 16 and 17 atd = 35 cm
reveal the same conclusion.

2) Accuracy at Different Distances: Figs. 16 and 17 reveal
the effect of distance on gesture recognition accuracy. Accuracy
decreases with increasing distance due to the lower reflected
light intensity. The reduced accuracy at increased distance with
both infrared and visible light sources can also be attributed to
lower light intensities reducing the overall system SNR. The
results of 20 cm sensing data for training with 30 cm data for
testing and vice versa are shown in Figs. 16 and 17, to show the
sensitivity on different training and testing distances. The effect
of distance for collecting testing data had negligible impact on
the accuracy of the system. The accuracies of the same training
dataset with different testing sets were found to be similar.

However, the standardization discussed in Section II-C was
meant to reduce the impact of absolute light intensity on perfor-
mance. The above result was, therefore, somewhat unexpected
and compelled us to compare the recognition accuracy with and
without standardization. As shown in Fig. 18, the standardiza-
tion process does not make the system agnostic to the impact
of different sources and distances, but it does systematically
increase the recognition accuracy.
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Fig. 17. Accuracy results of infrared LWS at 20 and 35 cm (ambient light is
ON; mean = 96.13%, SD = 2.59% for the accuracy at 20 cm; mean = 94.62%,
SD = 2.92% for the accuracy using the dataset at 20 cm as training set and
dataset at 35 cm as testing set; mean = 92.00%, SD = 3.55% for the accuracy
using the dataset at 35 cm as training set and dataset at 20 cm as testing set;
and mean = 84.75%, SD = 2.96% for the accuracy at 20 cm) with confidence
interval = 0.95.

Fig. 18. Effect of standardization step on the average accuracy for both infrared
and visible light source at 20 and 35 cm (ambient light is ON) with confidence
interval = 0.95.

3) Accuracy With Different Ambient Lighting: To determine
the effect of ambient light on recognition accuracy, we compared
the classifications result with ambient lights ON and OFF using
both infrared and visible LWS at d = 20 cm. The ambient light
is ON means the fluorescent lights in the ceiling and computer
screen light are included in the environment light. The ambient
light is OFF means that there is no light in the room and the light
sources are our infrared light or visible light source.

It is seen from the results in Tables I and VI that, when using
the infrared source, ambient lighting conditions have little, if any,
significant impact. This is consistent with the fact that the power
of the reflected infrared light is much greater than the ambient
contribution. However, Tables III and VII show that for visible
LWS, recognition is slightly better when ambient lighting is OFF.

TABLE VI
CONFUSION MATRIX OF INFRARED WAVE SENSING AROUND 20 cm IN THE

DARK (AMBIENT LIGHT IS OFF)

TABLE VII
CONFUSION MATRIX OF VISIBLE LWS AROUND 20 cm IN THE DARK

(AMBIENT LIGHT IS OFF)

Fig. 19. Effect of denoising step on the average accuracy for both infrared
and visible light source at 20 and 35 cm (ambient light is ON) with confidence
interval = 0.95.

This is attributed to the fact that the visible light source along
with signal reflections is weaker. The weaker reflected signals
are impacted more by the environment noise compared with the
stronger one.

As a related topic, we also show the performance of the
denoising operation since this was meant to reduce the impact
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of noise level on recognition accuracy. As shown in Fig. 19,
the accuracy systematically improves by including denoising,
although the benefit is not uniform to all conditions. It appears
to have the greatest positive impact as signal levels approach the
environmental noise levels.

IV. CONCLUSION

In this article, we presented a light-based hand gesture recog-
nition system that utilized incoherent light reflection signals to
accomplish hand gesture recognition in a short range between
20 and 35 cm. The main innovation was the exploitation of
ubiquitous light, which is safe, low-cost, and easily generated
and analyzed. We have shown how we employ a series of signal
processing steps and use machine learning such that this sensing
modality can achieve high recognition accuracy for eight ges-
tures (in the case of infrared light sensing) in common ambient
lighting conditions.

In order to verify the limitations and capabilities of our system,
more measurements and testing should be done on more subjects
and in different lighting conditions. The age, gender, and skin
complexion of subjects have to be taken into consideration.
Moreover, it was observed that recognition accuracy improved
with transmitter power, which suggested that improved perfor-
mance can be achieved with greater SNR and/or dynamic range
in the system. More photodetectors are needed to be applied
to achieve the tracking of hand or body movement at large
distances. Future studies will be conducted to better quantify
and model the operation of the system, to further verify this
method’s practicality and limitations, and to improve system
performance.
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