Hadoop Image Processing Framework

Sridhar Vemula
Computer Science Department
Oklahoma State University
Stillwater, Oklahoma
Email: sridhar.vemula@okstate.edu

Abstract—With the rapid growth of social media, the number
of images being uploaded to the internet is exploding. Massive
quantities of images are shared through multi-platform services
such as Snapchat, Instagram, Facebook and WhatsApp; recent
studies estimate that over 1.8 billion photos are uploaded every
day. However, for the most part, applications that make use of
this vast data have yet to emerge. Most current image processing
applications, designed for small-scale, local computation, do not
scale well to web-sized problems with their large requirements
for computational resources and storage. The emergence of pro-
cessing frameworks such as the Hadoop MapReduce[1] platform
addresses the problem of providing a system for computationally
intensive data processing and distributed storage. However, to
learn the technical complexities of developing useful applications
using Hadoop requires a large investment of time and experience
on the part of the developer. As such, the pool of researchers and
programmers with the varied skills to develop applications that
can use large sets of images has been limited. To address this
we have developed the Hadoop Image Processing Framework,
which provides a Hadoop-based library to support large-scale
image processing. The main aim of the framework is to allow
developers of image processing applications to leverage the
Hadoop MapReduce framework without having to master its
technical details and introduce an additional source of complexity
and error into their programs.

I. INTRODUCTION

With the spread of social media in recent years, a large
amount of image data has been accumulating. When pro-
cessing this massive data resource has been limited to single
computers, computational power and storage ability quickly
become bottlenecks. Alternately, processing tasks can typically
be performed on a distributed system by dividing the task into
several subtasks. The ability to parallelize tasks allows for
scalable, efficient execution of resource-intensive applications.
The Hadoop MapReduce framework provides a platform for
such tasks.

When considering operations such as face detection, image
classification[2] and other types of processing on images, there
are limits on what can be done to improve performance of
single computers to make them able to process information at
the scale of social media. Therefore, the advantages of parallel
distributed processing of a large image dataset by using the
computational resources of a cloud computing environment
should be considered. In addition, if computational resources
can be secured easily and relatively inexpensively, then cloud
computing is suitable for handling large image data sets
at very low cost and increased performance. Hadoop, as a
system for processing large numbers of images by parallel
and distributed computing, seems promising. In fact, Hadoop

Christopher Crick
Computer Science Department
Oklahoma State University
Stillwater, Oklahoma
Email: chriscrick@cs.okstate.edu

is in use all over the world. Studies using Hadoop have been
performed, dealing with text data files[3], analyzing large
volumes of DNA sequence data[4], converting the data of a
large number of still images to PDF format, and carrying out
feature selection/extraction in astronomy[5]. These examples
demonstrate the usefulness of the Hadoop system, which can
run multiple processes in parallel for load balancing and task
management.

Most of the image processing applications that use the
Hadoop MapReduce framework are highly complex and im-
pose a staggering learning curve. The overhead, in programmer
time and expertise, required to implement such applications
is cumbersome. To address this, we present the Hadoop
Image Processing Framework, which hides the highly technical
details of the Hadoop system and allows programmers who can
implement image processing algorithms but who have no par-
ticular expertise in distributed systems to nevertheless leverage
the advanced resources of a distributed, cloud-oriented Hadoop
system. Our framework provides users with easy access to
large-scale image data, smoothly enabling rapid prototyping
and flexible application of complex image processing algo-
rithms to very large, distributed image databases.

The Hadoop Image Processing Framework is largely a soft-
ware engineering platform, with the goal of hiding Hadoop’s
complexity while providing users with the ability to use the
system for large-scale image processing without becoming
crack Hadoop engineers. The framework’s ease of use and
Java-oriented semantics will further ease the process of cre-
ating large scale image applications and experiments. This
framework is an excellent tool for novice Hadoop users,
image application developers and computer vision researchers,
allowing the rapid development of image software that can take
advantage of the huge data stores, rich metadata and global
reach of current online image sources.'.

In the following section we will describe prior work in
this area. Next we present an overview of the Hadoop Image
Processing Framework including the Downloader, Processor
and Extractor stages. Additionally, we describe our approach
of distributing tasks for MapReduce. Finally, we demonstrate
the potential of this framework with quantitative analysis and
experiments performed on image processing tasks.

IThe Hadoop Image Processing Framework is open source and freely
available for download at https://github.com/okstate-robotics/hipl.git

II. RELATED WORK

With the rapid usage increase of online photo storage and
social media on sites like Facebook, Flickr and Picasa, more
image data is available than ever before, and is growing every
day. Every minute 27,800 photos are uploaded to Instagram,[6]
while Facebook receives 208,300 photos over the same time
frame. This alone provides a source of image data that can
scale into the billions. The explosion of available images on
social media has motivated image processing research and
application development that can take advantage of very large
image data stores.

White et.al [7] presents a case study of classifying and
clustering billions of regular images using MapReduce. It
describes an image pre-processing technique for use in a
sliding-window approach for object recognition. Pereira et.al
[8] outlines some of the limitations of the MapReduce model
when dealing with high-speed video encoding, namely its
dependence on the NameNode as a single point of failure,
and the difficulties inherent in generalizing the framework
to suit particular issues. It proposes an alternate optimized
implementation for providing cloud-based IaaS (Infrastructure
as a Service) solutions. Lv et.al [9] describes using the k-means
algorithm in conjunction with MapReduce and satellite/aerial
photographs in order to find different elements based on their
color.

Zhang et.al [10] presents methods used for processing
sequences of microscope images of live cells. The images
are relatively small (512x512, 16-bit pixels). Stored in 90
MB folders, the authors encountered difficulties regarding
fitting into Hadoop DFS blocks with were solved by custom
InputFormat, InputSplit and RecordReader classes. Powell
et.al [11] describes how NASA handles image processing of
celestial images captured by the Mars Orbiter and rovers.
Clear and concise descriptions are provided about the seg-
mentation of gigapixel images into tiles, how the tiles are
processed and how the image processing framework handles
scaling and works with the distributed processing. Wang,
Yinhai and McCleary[12] discuss speeding up the analysis of
tissue microarray images by substituting human expert analysis
for automated processing algorithms. While the images were
gigapixel-sized, the content was easily segmented and there
was no need to analyze all of an image at once. The work
was all done on a specially-built high performance computing
platform using the Hadoop framework.

Bajcsy et.al [13] present a characterization of four basic
terabyte-size image computations on a Hadoop cluster in terms
of their relative efficiency according to a modified Amdahl’s
Law. The work was motivated by the fact that there is a
lack of standard benchmarks and stress tests for large-scale
image processing operations on the Hadoop framework. Moise
et.al [14] outlines the querying of thousands of images in one
run using the Hadoop MapReduce framework and the eCP
Algorithm. The experiment performs an image search on 110
million images collected from the web using the Grid 5000
platform. The results are evaluated in order to understand the
best practices for tuning Hadoop MapReduce performance for
image search.

The above shows that there has been a great deal of inten-
sive work in image processing using MapReduce. However,

each independent project requires a complex, error-prone, one-
off implementation. Such research and application develop-
ment would benefit greatly from a standard, well-engineered
image processing framework such as the one we provide.

III. METHODOLOGY

The Hadoop Image Processing Framework is intended to
provide users with an accessible, easy-to-use tool for develop-
ing large-scale image processing applications.

The main goals of the Hadoop Image Processing Frame-
work are:

e Provide an open source framework over Hadoop
MapReduce for developing large-scale image appli-
cations

e Provide the ability to flexibly store images in various
Hadoop file formats

e Present users with an intuitive application program-
ming interface for image-based operations which is
highly parallelized and balanced, but which hides the
technical details of Hadoop MapReduce

e Allow interoperability between various image process-
ing libraries

A. Downloading and storing image data

Hadoop wuses the Hadoop Distributed File System
(HDFS)[15] to store files in various nodes throughout the
cluster. One of Hadoop’s significant problems is that of small
file storage. [16] A small file is one which is significantly
smaller than HDFS block size. Large image datasets are made
up of small image files in great numbers, which is a situation
HDFS has a great deal of trouble handling. This problem can
be solved by providing a container to group the files in some
way. Hadoop offers a few options:

e HAR File
e Sequence File
e Map File

The Downloader Module of our Hadoop Image Processing
Framework performs the following operations:

Step 1: Input a URL List. Initially users input a file
containing URLs of images to download. The input list should
be a text file with one image URL per line. The list can be
generated by hand, extracted from a database or a provided by
a search. The framework provides an extendable ripper module
for extracting URLs from Flickr and Google image searches
and from SQL databases. In addition to the list the user selects
the type of image bundle to be generated (e.g. HAR, sequence
or map). Our system divides the URLs for download across
the available processing nodes for maximum efficiency and
parallelism. The URL list is split into several map tasks of
equal size across the nodes. Each node map task generates
several image bundles appropriate to the selected input list,
containing all of the image URLs to download. In the reduce
phase, the Reducer will merge these image bundles into a large
image bundle.

Step 2: Split URLs across nodes. From the input file
containing the list of image URLs and the type of file to
be generated, we equally distribute the task of downloading
images across the all the nodes in the cluster. The nodes
are efficiently managed so that no memory overflow can
occur even for terabytes of images downloaded in a single
map task. This allows maximum downloading parallelization.
Image URLs are distributed among all available processing
nodes, and each map task begins downloading its respective
image set.

Generate
™ new temp file
Image is I
Downloader downloaded and fHile size Is) Generate
| greater than »> .
Map Task [—®| appendedtoa hlock size new temp file
temp file

Generate
—»|new temp file

Fig. 1. Individual map task of Downloader Module

Step 3: Download image data from URLs. For every
URL retrieved in the map task, a connection is established
according to the appropriate transfer protocol (e.g. FTP, HTTP,
HTTPS, etc.). Once connected, we check the file type. Valid
images are assigned InputStreams associated with the con-
nection. From these InputStreams, we generate new HImage
objects and add the images to the image bundle. The HImage
class holds the image data and provides an interface for the
user’s manipulation of image and image header data. The
HImage class also provides interoperability between various
image data types (e.g. Bufferedlmage, Mat, etc.).

Step 4: Store images in an image bundle. Once an
HImage object is received, it can be added to the image bundle
simply by passing the HImage object to the appendlmage
method. Each map task generates a number of image bundles
depending on the image list. In the reduce phase, all of these
image bundles are merged into one large bundle.

B. Processing image bundle using MapReduce

Hadoop MapReduce program handles input and output data
very efficiently, but their native data exchange formats are
not convenient for representing or manipulating image data.
For instance, distributing images across map nodes require
the translation of images into strings, then later decoding
these image strings into specified formats in order to access
pixel information. This is both inefficient and inconvenient.
To overcome this problem, images should be represented in as
many different formats as possible, increasing flexibility. The
framework focuses on bringing familiar data types directly to
user.

As distribution is important in MapReduce, images should
be processed in the same machine where the bundle block
resides. In a generic MapReduce system, the user is responsible
for creating InputFormat and RecordReader classes to specify
the MapReduce job and distribute the input among nodes.

Custom Processor Input Format

v v v

-

File Split File Split - File Split
v v ¥
Record Record Record
Reader Reader == Reader
¥ ¥ v
Map Task Map Task - Map Task
Temporary Temporary Tempoarary
files are files are -- files are
created created created

v v v

Reduce Phase: Appends temporary files to single file

¥

Reduce Phase: Appends temporary files to single file

Fig. 2. Single node running the Downloader Module (handled by the
framework and transparent to the user)

This is a cumbersome and error-prone task; the Hadoop
Image Processing Framework provides such InputFormat and
RecordReaders for system’s ease of use.

Images are distributed as various image data types and
users have immediate access to pixel values. If pixel values
are naively extracted from the image byte formats, valuable
image header data (e.g. JPEG EXIF data or IHDR [17] image
headers) is lost. The framework holds the image data in a
special HImageHeader data type before converting the image
bytes into pixel values. After processing pixel data, image
headers are reattached to the processed results. The small
amount of storage overhead required for this functionality is a
trade-off worth making for preserving image header data after
processing.

The functionality of the framework’s Processor module is
described below:

Step 1: Devise the algorithm. We assume that the user
writes an algorithm which extends the provided GenericAl-
gorithm class. This class is passed as an argument to the
processor module. The framework starts a MapReduce job
with the algorithm as an input. The GenericAlgorithm holds an
HlImage variable; this allows user to write an algorithm on a
single image data structure, which the framework then iterates
over the entire image bundle. In addition to the algorithm,
the user should provide the image bundle file that needs to
be processed. Depending on the specifics of the image bundle
organization and contents, the bundle is divided across nodes as
individual map tasks. Each map task will apply the processing
algorithm to each local image and append them to the output
image bundle. In the reduce phase, the Reducer merges these
image bundles into a large image bundle.

Step 2: Split image bundle across nodes. The input image
bundle is stored as blocks in the HDFS. In order to obtain
maximum throughput, the framework establishes each map

task to run in the same block where it resides, using custom
input format and record reader classes. This allows maximum
parallelization without the problem of transferring data across
nodes. Each image bundle now applies different map tasks to
the image data for which it is responsible.

Image is Obtained Himage is
Map Task - retrieved as |—» processed with Input
Himage Algorithm

Obtained Himage is Processed Himage is
appended to «_lappended with original
Processed header
ImageBundle

Fig. 3. Individual map task of Processor Module

Step 3: Process individual image. The processing al-
gorithm devised by the user and provided as input to the
Processing Module is applied to every Hlmage retrieved in
the map task. The HImage provides its image data in the data
format (e.g. Java Bufferedlmage, OpenCV Mat, etc.) requested
by the user and used by the processing algorithm. Once the
image data type is retrieved, processing takes place. After
processing, the preserved image header data from the original
image is appended to the processed image. The processed
image is appended to the temporary bundle generated by the
map task.

Step 4: Store processed images in an image bundle.
Every map task generates an image bundle upon completion
of its processing. Once the map phase is completed there are
many bundles scattered across the computing cluster. In the
reduce phase, all of these temporary image bundles are merged
into a single large file which contains all the processed images.

-0

Custom Processor Input Format

v ! v

File Split File Split - File Split
¥ v ¥
Record Record Record
Reader Reader == Reader
¥ ¥ ¥
Map Task Map Task - Map Task
Processed Processed Processed
Image Image -- Image
Bundle Bundle Bundle

v v v

Reducer: Merges processed bundles to single bundle

¥

Generated Processed ImageBundle

Fig. 4. Single node running the Processor Module (handled by the framework
and transparent to user)

C. Extracting image bundles using MapReduce

In addition to creating and processing image bundles, the
framework provides a method for extracting and viewing these
images. Generally, Hadoop extracts images from an image
bundle iteratively, inefficiently using a single node for the task.
To address this inefficiency, we designed an Extractor module
which extracts images in parallel across all available nodes.

Distribution plays a key role in MapReduce; we want to
make effective and efficient use of the nodes in the computing
cluster. As previously mentioned in the description of the
Processor module, a user working in a generic Hadoop system
must again devise custom InputFormat and RecordReader
classes in order to facilitate distributed image extraction. The
Hadoop Image Processing Framework provides this functional-
ity for the extraction task as well, providing much greater ease
of use for the development of image processing applications.

Organizing and specifying the final location of extracted
images in a large distributed task can be confusing and
difficult. Our framework provides this functionality, and allows
the user simply to specify whether images should be extracted
to a local file system or reside on the Hadoop DFS.

The process of the Extractor module is explained below:

Step 1: Input the image bundle to be extracted. The
image bundle specified for extraction is passed as a parameter
to the Extractor module. In addition, the user can include
an optional parameter specifying the images’ final location
(defaults to local file system). The image bundle is then
distributed across the nodes as individual map tasks. Each
map task will extract the requisite images onto the specified
filesystem.

Retrieves Image Writes images to
bytes from | local or remaote file
ImageBundle system

Map Task

Fig. 5. Individual map task of Extractor Module

Step 2: Split Image bundle across nodes. The input image
bundle is split across available nodes using the framework’s
custom input format and record reader classes for maximum
throughput. Once a map task starts, HImage objects are re-
trieved.

Step 3: Extract individual image. The image bytes ob-
tained from each HImage object are stored onto the filesystem
in the appropriate file format based on its image type. The
Extractor module lacks a reduce phase.

IV. IMAGE PROCESSING ALGORITHMS

To explore the Hadoop Image Processing Framework’s
capabilities and performance, we implemented multiple varia-
tions of existing widely-used image processing algorithms:

e A stand-alone implementation running on a single
node with no distributed processing capability

e A generic Hadoop implementation which requires a
high level of software engineering expertise within the
Hadoop framework

Custom Extractor Input Format

v ! v

-0

File Split File Split - File Split
v ¥ ¥
Record Record Record
Reader Reader == Reader
¥ ¥ ¥
Map Task Map Task - Map Task

v v v

Reducer: Merges processed bundles to single bundle

Fig. 6. Single node running the Extractor Module (handled by the framework
and transparent to the user)

e An implementation that employs the Hadoop Image
Processing Framework

We chose the following algorithms: Laplacian filtering,
Canny edge detection and k-means image segmentation. These
are widely-used, computation-intensive and data-intensive al-
gorithms of varying complexity which require large distributed
systems for timely operation on hundreds of thousands of
images.

A. Laplacian Filter

The Laplacian is a 2-D isotropic measure of the 2nd spatial
derivative of an image. The Laplacian of an image highlights
regions of rapid intensity change and is therefore often used for
edge detection. The Laplacian is often applied to an image that
has first been smoothed with an approximation of a Gaussian
filter in order to reduce sensitivity to noise. The operator
normally takes a single gray level image as input and produces
another gray level image as output.

The Laplacian L(z,y)of an image with pixel intensity
values I(z,y) is given by

921 9?1
L(z,y) = @‘F@ (D

This is calculated using a convolution filter.

Since the input image is represented as a set of discrete
pixels, we have to find a discrete convolution kernel that can
approximate the second derivatives in the definition of the
Laplacian. This is a very simple computation that consists of
a few additions and multiplications.

B. Canny Edge Detection

Canny edge detection[18] is an multi-stage algorithm to de-
tect a wide range of edges in images. Edge detection, especially
step edge detection, is an important technique to extract useful
structural information from visual information, dramatically
reducing the amount of data to be processed. Among existing
edge detection methods, the Canny edge detection algorithm is
considered to provide reliable edge detection without relying
on context-specific heuristics.

The process of the Canny edge detection algorithm can
defined in five stages:

e Apply a Gaussian filter to smooth the image and
remove noise.

e Find the intensity gradients of the image.

e Apply non-maximum suppression to get rid of spuri-
ous responses to edge detection

e Apply a double threshold to determine potential edges.

e Track edges by hysteresis. Finalize the detection of
edges by suppressing all edges that are “weak” and
not connected to strong edges.

C. Image segmentation using k-means clustering

The k-means algorithm is an unsupervised clustering al-
gorithm that classifies input data points into multiple classes
based on their Euclidean distance from each other. The al-
gorithm assumes that the data features form a vector space
and tries to find natural clusterings within it. The points are
clustered around centroids p;V: = 1...k which are obtained by
minimizing the objective

V=>"" (a - m)’ ©))

i=1 Tj €Ss;

where there are k clusters S;,i = 1,2,...,k and u; is the
centroid or mean point of all the points z; € S;.

For the purposes of our experiment, we implemented
iterative versions of the algorithm. The algorithm takes a 2-
dimensional image as input. The steps of the algorithm are as
follows:

e Compute the intensity distribution (also called the
histogram) of the image.

e Initialize the centroids with & random intensities.

e Repeat the following steps until the cluster labels of
the image stop changing from one iteration to the next:

o Cluster the points based on the distance of their
intensities from the centroid’s intensity.

¢’ = argmin, |[z" — pu;]|? 3

o Compute the new centroid for each of the
clusters.

3

He; = jhat
= @)
2 Hei =3}

where k is a parameter of the algorithm (the
number of clusters to be found), ¢ iterates
over all the intensities, j iterates over all the
centroids and u; are the centroid intensities.

V. EXPERIMENTAL RESULTS

We present execution time and programming complexity
results for the three image processing algorithms described
above, demonstrating the effectiveness of the Hadoop Image
Processing Framework. These algorithms are not particularly
challenging to implement on a single node, but producing a
distributed Hadoop implementation is quite challenging and
requires a great deal of familiarity with Hadoop concepts and
distributed software engineering expertise. On the other hand,
our framework provides all of the performance and scalability
benefits of the Hadoop system while retaining the simplicity
of the single-node implementation. In this section we describe
the dataset, hardware and software specifications used in our
experiments, and discuss the results.

A. Characteristics of Image Dataset, Hardware and Software

We performed image processing computations on a dataset
of about 1 TB in size. The dataset was obtained by performing
a Flickr search based on the keyword “flight”. The dataset was
extracted using the FlickrRipper, an instance of the Ripper
interface provided by our Hadoop Image Processing Frame-
work. The framework currently provides rippers for Flickr
and Google image searches, and more will be provided in the
future. A Ripper interface extracts image URLs from search
results, and can be implemented for any set of results in
any format. The experimental dataset is composed of 220,000
images at 4.76 MB/image, or about 1 TB.

B. Computer hardware and software characteristics

We ran the image processing computations on a 6-node
distributed cluster and on a single-node desktop computer. The
table below summarizes the cluster and desktop hardware and
software specifications. The cluster nodes differ in terms of
CPU speed and RAM. We installed Hadoop, Cloudera CDHS
and Java 1.7 on the cluster to support Java code execution.
The desktop computer had a similar software configuration to
the cluster.

TABLE 1. COMPUTER HARDWARE AND SOFTWARE CHARACTERISTICS.
Specs Cluster Desktop
8 cores, 16GB of RAM
Hard Cluster Nodes | processors and 4 GB and hyperthreadin
ardware RAM and name node activai,:d &
with 8 GB RAM
Networking 1 Gbit/second
Java version Java version
Java Virtual ”1.7.0_45 ”1.7.0_45"
Machine Java SE Runtime Java SE Runtime
Software . .
Environment Environment
] Hadoop 2.5
Hadoop Cloudera CDHS5
Operating CentOS 6.5 CentOS 6.5
System

The desktop implementations of the algorithms are Java
programs for processing a small image dataset. As soon as the
data set is processed the program halts. The desktop imple-
mentation starts as a single thread, and images are processed
one at a time in succession. When the dataset size is low,
each program runs smoothly and with excellent performance.
However, as the size of the data to be processed reaches the
terabyte scale, such a single-process approach fails utterly.

Data on this scale must be processed in distributed fashion
using Hadoop.

Each algorithm is also implemented on a Hadoop clus-
ter without using the Hadoop Image Processing Framework.
These implementations overcome the problem of handling
large datasets but they suffer from extremely complex code.
The user needs to write a great deal of code and understand
the technical details of Hadoop. Writing such code, including
custom InputFormats and RecordReaders, is cumbersome and
error-prone. Figure 8 compares the actual lines of code a user
needs to write in order to run our experimental algorithms (or
any similar image processing application) on a Hadoop cluster.

Finally, we compare the same algorithms implemented
on a Hadoop cluster using the framework. These implemen-
tations overcome the problems of handling large datasets
and managing interoperability between image datatypes while
holding code complexity down to the same level as the single-
process, local implementation. Users enjoy automated creation
of custom InputFormats and RecordReaders, and can tune
settings for the desired output. The framework is so transparent
that the user needs only a few lines of code to process a large
image data set. It hides the technical details of MapReduce
and runs the code in highly parallelized fashion. The code
required to implement each image processing algorithm is no
more complex than the same algorithm implemented on a local,
single-threaded system, but the performance improvement for
large datasets is immense.

TABLE II. CHARACTERISTICS OF COMPUTATIONAL ELASTICITY,
CODING COMPLEXITY AND DATA LOCALITY FOR THE THREE
EXPERIMENTAL PLATFORMS.

Computa-

tional Computational Code Data
Platform Elasticity Complexity Locality
Low : limited by . .
RAM and CPU of Normal § 90mplex1ty All data are
Desktop . lies in writing the .
the executing . on local disk
algorithm
computer
Heavy : Complexity All data resides
lies in writing every . p—
. module in framework | - HDFS. Custom
Hadoop: . . . InputFormats
. High: Nodes can including custom
without need to be
” be requested InputFormats and
using created to launch
as needed RecordReaders. User .
framework . . computations
requires high in appropriate
technical expertise locations
with Hadoop.
Normal : Complexity
Hadoop: High: Nodes can lies in writing All data resides
using be requested algorithm and is in HDFS. Highly
framework | as needed equivalent to writing parallelized.
on desktop platform

C. Observations

We have explored the space of image processing algo-
rithms, applying different hardware and software configura-
tions to the various data sets. Specifically, we compared:

e Three image processing algorithms described in Sec-
tion IV

e Datasets of varying image counts

e Configurations of hardware cluster used for computa-
tions

e Coding complexity - measured in Lines of Code
(LOC)

The numerical results are shown in Figures 7 through 10.

Figure 7 illustrates the performance comparison of Canny
edge detection on a single node, on Hadoop using our frame-
work and Hadoop without using the framework.

7000

6000

4000
3000

2000

running time in seconds

1000

0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

image count
em—twithout framework

using framework ——single node

Fig. 7. Canny edge detection computation executed on a single node and on
a Hadoop cluster with and without using framework

It can be observed that the Hadoop cluster performance
is nearly identical whether the Hadoop Image Processing
Framework is used or not. The single node performance is
satisfactory on small input sizes; in fact it outperforms Hadoop
when the amount of data is very small owing to the lack of
MapReduce overhead. However, as the amount of data grows
the single node performance becomes increasingly poor. The
same pattern is observed with any image processing algorithm.

Figure 8 compares the coding complexity of the different
image handling and processing tasks described in Section III,
for the Canny edge detection task. The Downloader module
and Extractor module are simple to use and require few lines of
code to configure. The processor module includes the specific
algorithm devised by the user, which can be significant amount
of code, but using our framework to configure the algorithm
for MapReduce requires almost no additional coding.

1zo0
1074

1000

574 580
a0

426
400
2058
Z00 116
|- -
: i

downloadsr

Lines of code

procssgor sxtractor

E=ingls nods with framework mwithout Eramswork

Fig. 8. Comparing coding complexities of modules in different environments

Figure 9 shows the coding complexity of the processor
portion of our three experimental image processing algorithms.
The naive single-process, single-node algorithm requires a
similar amount of code to using our highly parallel, distributed
framework, while direct implementation of the algorithm using
Hadoop and MapReduce requires a great deal more effort.
The Hadoop Image Processing Framework hides all of this
complexity from the user.

1zoo
1074

1000

00

L
8
580

- 574
Lo
o 455
B0 293
ks a1z 230
o zoo

a |

laplacian canny sdgs k-msan=
E=ingls nods with Eramswork mwithout Eramswork
Fig. 9. Comparing coding complexity of Laplacian filter, Canny edge

detection and k-means clustering in different environments

The Hadoop Image Processing Framework provides trans-
parency on multiple levels. Users can use the predefined
MapReduce modules (Downloader, Processor and Extractor)
for processing the image modules, and most image processing
tasks require no more than this. Users may also write custom
MapReduce tasks within the framework, taking advantage of
its hierarchical construction. This still protects the user from
the full complexity and error-prone nature of the full Hadoop
framework, but requires additional knowledge and expertise on
the user’s part.

The Hadoop Image Processing Framework is intended to
be extremely simple to use. The framework strictly adheres
to Java file writing and reading techniques, extending those
conventions to the Hadoop framework’s notion of reading and
writing bundle files. In this way, working with Hadoop image
processing is exactly like working on a single system. The
main aim of the framework is to provide useful software
abstractions such that programming on a Hadoop cluster is
equivalent to programming on a single computer. Listing 1
demonstrates the similarity between Java code written for a
single machine and the same code using the image processing
framework. The framework’s use of ordinary Java conventions
helps in understanding the software engineering process and
reduces complexity. Listing 2 demonstrates the mechanism for
setting the image headers of processed images.

ZEW : SequencebBundlewWriter MER : MapBundleReader
SER : SequencebBundleReadsr HEW : HRRBundleWriter
MEW : MapBundlewWriter HER : HARREBundleReader
350
291
Elal) 274
250
u
=
5 zoo
w
o 147
m 150 133
= 104 103
— 1loo
0
10 I g 10 I 3 1= 3
]
SEW SER MEW MR HEW HER

with framswork Mwithout Eramswork

Fig. 10. Comparing file writers and readers with and without using framework

Listing 1. Comparing FileWriter instance in java and SequenceBundleWriter
instance in Hadoop Image Processing framework

//Sample File Writing in Java

File file = new File("test");
FileWriter fw = new FileWriter (file);
fw.append (val)

fw.close();

//Sample BundleFile Writing in Hadoop using
Framework

BundleFile file = new
BundleFile ("test_bundle.seqg");

SequenceBundleWriter sbw = new
SequenceBundleWriter (file);

sbw.append (himage) ;

sbw.close();

Listing 2. Setting image headers for processed images using Hadoop Image
Processing Framework

//input - HImage 1is sent as input

CannyEdge canny = new CannyEdge (input) ;
canny.process () ;

HImage himage = canny.getProcessedImage () ;
himage.setImageHeader (input.getImageHeader ());

VI. CONCLUSION

This paper has described our Hadoop Image Processing
Framework for implementing large scale image processing
applications. The framework is designed to abstract the tech-
nical details of Hadoop’s powerful MapReduce system and
provide an easy mechanism for users to process large image
datasets. We provide software machinery for storing images in
the various Hadoop file formats and efficiently accessing the
Map Reduce pipeline. By providing interoperability between
different image data types we allow the user to leverage
many different open-source image processing libraries. Finally,
we provide the means to preserve image headers throughout
image manipulation process, retaining useful and valuable
information for image processing and vision applications.

With these features, the framework provides a new level
of transparency and simplicity for creating large-scale im-
age processing applications on top of Hadoop’s MapReduce
framework. We demonstrate the power and effectiveness of
the framework in terms of performance enhancement and com-
plexity reduction. The Hadoop Image Processing Framework
should greatly expand the population of software developers
and researchers easily able to create large-scale image process-
ing applications.

VII. FUTURE WORK

In the near future we hope to extend the framework into
a full-fledged multimedia processing framework. We would
like to improve the framework to handle audio and video
processing over Hadoop with similar ease. We also intend to
add a CUDA module to allow processing tasks to make use
of machines’ graphics cards. Finally, we intend to develop our
system into a highly parallelized open-source Hadoop multi-
media processing framework, providing web-based graphical
user interfaces for image processing applications.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

Y. Li, D. Crandall, and D. Huttenlocher, “Landmark classification in
large-scale image collections,” in Computer Vision, 2009 IEEE 12th
International Conference on, Sept 2009, pp. 1957-1964.

J. Lin and C. Dyer, “Data-intensive text processing with mapreduce,”
Synthesis Lectures on Human Language Technologies, vol. 3, no. 1, pp.
1-177, 2010.

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and
M. A. DePristo, “The Genome Analysis Toolkit: A MapReduce frame-
work for analyzing next-generation DNA sequencing data,” Genome
Research, vol. 20, pp. 1297-1303, 2010.

K. Wiley, A. Connolly, J. Gardner, S. Krughoff, M. Balazinska,
B. Howe, Y. Kwon, and Y. Bu, “Astronomy in the cloud: using
mapreduce for image co-addition,” Astronomy, vol. 123, no. 901, pp.
366-380, 2011.

S. Horaczek, “How many photos are uploaded to the inter-
net every minute?” http://www.popphoto.com/news/2013/05/how-many-
photos-are-uploaded-to-internet-every-minute, 2013.

B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale computer vision
using mapreduce for multimedia data mining,” in Proceedings of
the Tenth International Workshop on Multimedia Data Mining, ser.
MDMKDD °’10. New York, NY, USA: ACM, 2010, pp. 9:1-9:10.
[Online]. Available: http://doi.acm.org/10.1145/1814245.1814254

R. Pereira, M. Azambuja, K. Breitman, and M. Endler, “An architecture
for distributed high performance video processing in the cloud,” in
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on, July 2010, pp. 482-489.

Z. Lv, Y. Hu, H. Zhong, J. Wu, B. Li, and H. Zhao,
“Parallel k-means clustering of remote sensing images based on
mapreduce,” in Proceedings of the 2010 International Conference
on Web Information Systems and Mining, ser. WISM’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 162-170. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1927661.1927687

C. Zhang, H. De Sterck, A. Aboulnaga, H. Djambazian, and R. Sladek,
“Case study of scientific data processing on a cloud using hadoop,” in
High Performance Computing Systems and Applications, ser. Lecture
Notes in Computer Science, D. Mewhort, N. Cann, G. Slater, and
T. Naughton, Eds. Springer Berlin Heidelberg, 2010, vol. 5976, pp.
400-415.

M. Powell, R. Rossi, and K. Shams, “A scalable image processing
framework for gigapixel mars and other celestial body images,” in
Aerospace Conference, 2010 IEEE, March 2010, pp. 1-11.

Y. Wang, D. McCleary, C.-W. Wang, P. Kelly, J. James,
D. Fennell, and P. Hamilton, “Ultra-fast processing of gigapixel
tissue microarray images using high performance computing,” Cellular
Oncology, vol. 34, no. 5, pp. 495-507, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s13402-011-0046-4

P. Bajcsy, A. Vandecreme, J. Amelot, P. Nguyen, J. Chalfoun, and
M. Brady, “Terabyte-sized image computations on hadoop cluster
platforms,” in Big Data, 2013 IEEE International Conference on, Oct
2013, pp. 729-737.

D. Moise, D. Shestakov, G. Gudmundsson, and L. Amsaleg, “Terabyte-
scale image similarity search: Experience and best practice,” in Big
Data, 2013 IEEE International Conference on, Oct 2013, pp. 674-682.
K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, May 2010, pp. 1-10.

T. White, “The small files problem,”
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/, 2009.
D. Duce. Portable network graphics (png) specification. [Online].
Available: http://www.w3.0org/TR/PNG

J. Canny, “A computational approach to edge detection,” Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, vol. PAMI-§, no. 6,
pp. 679698, Nov 1986.

