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Abstract— We describe our efforts to create infrastructure to
enable web interfaces for robotics. Such interfaces will enable
researchers and users to remotely access robots through the
internet as well as expand the types of robotic applications
available to users with web-enabled devices. This paper centers
on rosjs, a lightweight Javascript binding for ROS, Willow
Garage’s robot middleware framework. rosjs exposes many of
the capabilities of ROS, allowing application developers to write
controllers that are executed through a web browser. We discuss
how rosjs extends ROS and briefly overview some of the features
it provides. rosjs has been instrumental in the creation of remote
laboratories featuring the iRobot Create and the PR2. These
facilities will be available to the community as experimental
resources. We describe the overall goals of this project as well
as provide a brief description of how rosjs was used to help
create web interfaces for these facilities.

I. INTRODUCTION

Equipping robots with web interfaces will extend the
reach and impact of robotic technology. Not only will
such interfaces allow researchers and users to access robots
remotely through the internet, but they will also greatly
expand the ecosystem of robotics applications available to
users with web-enabled devices. This paper describes our
efforts to create infrastructure to support such applications
and devices. Web-enabled robotics will allow users to control
robots within their home or workplace through a variety
of interfaces on their phone or computer. This technology
will also permit the creation of remote robot labs for shared
experimentation and developments. Researchers will be able
to perform experiments on remote systems to which they
would not otherwise have access, and compare results to
others in a shared lab environment.

Several robot middleware system have been proposed to
enable code sharing among roboticists. These middleware
systems include Player/Stage [1], the Carnegie Mellon Nav-
igation Toolkit (CARMEN) [2], Microsoft Robotics Stu-
dio [3], YARP [4], Lightweight Communications and Mar-
shalling (LCM) [5], and ROS [6], as well as other systems
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[7]. These middleware systems provide common interfaces
that allow code sharing and reuse. While middleware systems
differ in their design and features, they typically provide a
communication mechanism, an API for preferred languages,
and a mechanism for sharing code through libraries or
drivers. Middleware systems typically require developers to
code within the middleware framework, and often within a
specified build environment.

This paper introduces rosjs', a lightweight Javascript bind-
ing for ROS that allows web developers to create robot appli-
cations. Currently robot application development occurs, at
best, within a robot middleware framework. Robot middle-
ware systems are often large and complicated, thus requiring
developers acquire a substantial amount of expertise before
they can be productive. However, much of this low level
complexity can be hidden from the application programmer
using abstractions.

rosjs allows developers to program robot applications for
the web by exposing ROS topics and services as Javascript
objects. rosjs provides security mechanisms that allow users
to reserve time on the robot and authenticate their identity
using services like Google Calendar. It also provides the
ability to perform data logging of user experiences, in service
to experiments employing user studies. rosjs was imple-
mented as part of our larger goal of creating experimental
infrastructure for remote robotics laboratories. We describe
two remote laboratories and how rosjs was instrumental in
creating these facilities.

II. PREVIOUS WORK AND BACKGROUND

One of the strengths of rosjs is its support for quickly and
easily creating remote user interfaces. Much of the teleoper-
ation work in robotics has traditionally been aimed at tasks
where robots operate in environments that are hazardous to
human users, such as robotic surgery [8], search and rescue
[9], and outer space [10]. In these applications, users are
typically experts who have devoted a significant amount of
training time to the difficult task of controlling the robot and
interacting with its interfaces. Our goal with rosjs is to allow
application developers to create interfaces that are intuitive
even for novice users.

The robotics community has made a few forays into using
robots over the internet and shared-time robotics. Burgard

Ihttp://code.google.com/p/brown-ros-pkg/wiki/rosjs
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Fig. 1: Recreating traditional abstraction layers in robotics with rosjs. As depicted at left, software development depends on
well-established layers of abstraction. Developers and engineers working at each layer possess very different skill sets, but
the enterprise succeeds due to well-defined abstractions and interfaces. At present, roboticists must deal with all of these
layers at once, limited by both their own skills and by the unwieldiness inherent in poorly-abstracted systems (center). At
right, rosjs attempts to establish a clear abstraction boundary to address this problem.

and Schulz have explored handling delay in remote opera-
tion/teleoperation of mobile robots using predictive simula-
tion for visualization [11]. Goldberg et al. placed a robot in a
garden and allowed users to view and interact with the robot
over the web. Users were able to plant seeds, water, and
monitor the garden [12], [13]. Taylor and Trevelyan created
a remote lab in which users perform tasks involving brightly
colored blocks [14]. These early efforts made exciting first
steps into examining shared-time robots. Our interest is
on creating a community resource to enable researchers to
reproduce and share research results. Additionally, previous
approaches often require users to download custom software
or plugins. rosjs enables the interfaces to be created without
requiring any additional software other than an appropriate
browser.

A. REVIEW OF ROS

ROS is an open-source robot operating system currently
maintained by Willow Garage. ROS uses a peer-to-peer
networking topology; systems running ROS often consist of
a number of processes called nodes, possibly on different
machines, that perform the system’s computation. Nodes
communicate with each other by passing messages. Under
ROS, messages are data structures made up of typed fields.
Messages may be made up of standard primitive data types,
as well as arrays of primitives. Messages can include arbi-
trarily nested structures and arrays.

Nodes can use two types of communication to send mes-
sages within the ROS framework. The first is synchronous
and is called a service. Services are much like function calls
in traditional programming languages. Services are defined

by a string name and a pair of messages: a request and
a response. The response returns an object which may be
arbitrarily complex, ranging from a simple boolean indicating
success or failure to a large point cloud data structure. Only
one node can provide a service of a specific name.

The second type of communication is asynchronous and
is called a fopic. Topics are streams of objects that are
published by a node. Other nodes, “listeners”, may subscribe
by registering a handler function that is called whenever a
new topic object becomes available. Unlike services, listener
nodes are unable to use their subscription to the topic to com-
municate to the publisher. Multiple nodes may concurrently
publish and/or subscribe to the same topic and a single node
may publish and/or subscribe to multiple topics.

Unlike many other robot middleware systems, ROS is
more than a set of libraries that provide only a communica-
tion mechanism and protocol. Instead, nodes are developed
within a build system provided by ROS. The intent is
that a system running ROS should be comprised of many
independent modules. The build system is built on top of
CMake [15], which performs modular builds of both nodes
and the messages passed between them.

B. WEB APPLICATIONS AND JAVASCRIPT

Computing paradigms have developed over the years,
from batch systems to timeshared mainframes to standalone
desktops to client-server architectures to ubiquitous web-
based applications. Current technology allows transparent
administration, redundant storage, and instantaneous deploy-
ment of software running on wildly heterogenous platforms,
from smartphones to multicore desktops. This relatively new



and extremely fertile ecosystem has spawned a population of
users who understand basic web technologies such as HTML
and Javascript [16]. Familiarity with basic web technologies
extends beyond expert application developers to users who
would not necessarily call themselves programmers, but who
nevertheless use the web for all manner of creation and
communication and are familiar with the basic technologies.
One of the goals of rosjs is to broaden robotics to this
vast untapped population of writers, artists, students, and
designers. Javascript has become the default language of
the web and as such is one of the most popular languages
in the world. We hope to leverage a small part of that
popularity to open robotics to an entirely new audience and to
make working with robotics easier for those who are already
familiar.

rosjs is designed to integrate ROS with the web as un-
obtrusively and universally as possible. Its only advanced
dependency is on the HTMLS5 [17] technology of websock-
ets. Currently browsers such as Safari, Opera, and Chrome
fully support them, as does the nightly build of Firefox.
Universality has been one of the key factors in the success of
the web, and accordingly rosjs is implemented as a simple
Javascript library, completely agnostic with respect to pre-
ferred development frameworks. It uses JSON, the Javascript
object syntax itself, to communicate with its backend.

III. ROSJS

rosjs was designed to meet the needs of developers with
web programming experience. There are multiple advantages
to the ability to develop robot applications in the browser.
The first is that web browsers are a familiar interfaces that
are widely used, even by nontechical users. Additionally,
allowing users to access robots through the internet may
provide insights into new applications for robotics, as well
be used as a tool to recruit potential scientists to the field.
Javascript allows for rapid and flexible user interface and
visualization development. Applications developed within a
web browser are also portable across platforms, and updates
and new functionality can be easily provided.

rosjs was also designed to provide an additional level of
abstraction on top of ROS, as depicted in Figure 1. As a
point of comparison, traditional operating system architec-
tures build on top of hardware with increasing levels of
abstraction. The current state of many robot middleware
packages is that application developers must do a significant
amount of developing within the middleware layer. At a
minimum they must understand the build and transportation
mechanisms of the middleware package. rosjs adds another
layer of abstraction by presenting itself as a library/api.
This allows experienced ROS developers to prepare a ROS
environment within which application developers with less
robotics experience can create applications.

ROS abstracts individual robot capabilities, allowing
robots to be controlled through messages. It also provides
facilities for starting and stopping the individual ROS. rosjs
encapsulates these two aspects of ROS, presenting to the user
a unified view of a robot and it’s environment. If we continue

with the operating system metaphor: a modern operating sys-
tem allows a programmer to interact with hardware through
a standardized API. The operating system supports a division
of labor between installing and maintaining a particular
collection of device drivers (a function often performed by
IT personnel) and using the capabilities of that hardware (a
function most performed by programmers). rosjs supports a
similar division of labor by encapsulating the ROS develop-
ment environment into a library. It is relatively easy for an
experienced ROS user to prepare a ROS environment and
to allow a less experienced user leverage this environment
through rosjs. rosjs users need only understand the core
concepts of topics and services. Other details of ROS such
as launch files, starting a roscore, and networking become
superfluous.

By wrapping ROS, rosjs extends its capabilities. For
example, by acting as an intermediary between ROS and
the user, rosjs is able to provide authentication and other
security mechanisms that ROS itself lacks. We describe these
and some additional features in the next subsections.

A. FEATURES

1) Exposure of ROS Services and Topics: To use rosjs
users first create a rosjs object that is can be used to interact
with a robot using ROS services and topics.

rosjs provides interfaces to both publish and subscribe
to ROS topics. rosjs allows users to publish through a
simple publish command. rosjs handles listening to topics by
registering handler callbacks. The developer first registers a
callback with the rosjs object and then uses a service call
to register your interest in the topic with rosjs. Additionally,
developers can publish topics

rosjs interacts with ROS services via the callService func-
tion, one of the members of the ROS object. Under rosjs
services act as they do in ROS.

rosjs also provides a number of services that are accessed
as any other ROS service. However, these services are only
accessible from rosjs and cannot be used by another ROS
node. rosjs provides services that:

« allow the user to access the currently available topics
and services
« list the topics rosjs is subscribed to
« access the type of message of the topic/service
¢ access objects associated with the type of a requested
topic/service
« handle key authentication for rosjs
2) Security: When developing a robotic web application
that will be broadly available over the internet, security is a
fundamental concern. rosjs provides two forms of security:
protected services/topics and key authorization. Protected
topics and services are necessary when there are critical ser-
vices that the client should not interfere with — for example,
those that enforce human or robot safety. The mechanism is
straight-forward; protected topics and services simply start
with the string “protected”. Attempts to subscribe or publish
to protected topics will not result in message transfer. Calls
upon protected services will return an empty object.



Key authorization allows the developer to limit access to
a robotic web application to specific users. rosjs implements
a generic authentication mechanism based on JSON with
padding (jsonp). If provided with the URL of an appropriate
web-service, rosjs will use it to authenticate potential clients.
The jsonp web service should simply take in an alphabetic
key and return an amount of time (in seconds) that the key is
authorized to use rosjs. When operating in this mode, rosjs
expects the first action any client will take is to provide
such a alphabetic key. Any other action results in being
disconnected. Once authorized, a client can take normal
actions until the time it was allotted by the authorization
web service expires. Using this simple infrastructure, devel-
opers can easily bind rosjs to any authentication mechanism
they choose. On machines where appropriate SSL libraries
are available, rosjs will automatically support SSL (https)
keyurls. rosjs does not take any steps to throttle connection
attempts nor does it provide any other form of DOS (denial
of service) protection. Users are encouraged to handle this
issue at the port or firewall level.

3) Data Logging: A data logging mechanism is key for
recording data from experiments. rosjs provides a mechanism
for developers and users to save data. The data can be
saved locally to a file that can then be uploaded. ROS
developers can still log data using ROS on the server side
but the additional information can be used to collect data
about the user’s experience. This functionality is likely to be
necessary for for fields where user studies are necessary such
as Robot Learning from Demonstration (LfD) and Human
Robot Interaction.

B. UNDERLYING TECHNOLOGY

The major underlying design decision of rosjs was to use
HTML 5 websockets as the transportation layer. In order to
perform control, robotic web applications must be able to
transmit data from the robot to the user quickly. Websockets
provide the ability for the bidirectional communication be-
tween the browser over a single-socket TCP/IP connection.
Websockets lack the message overhead of technologies like
AJAX which require HTTP headers for each message. The
use of websockets generally results in higher speeds and
lower latency.

rosjs currently uses a custom websocket implementation
since a standard version does not yet exist. We hope to move
to a community provided library or implementation when one
becomes available. One of the benefits of using websockets is
that the server hosting the robot application can be different
from the server hosting rosjs.

IV. REMOTE LABORATORY

While middleware systems allow for code sharing and
reuse, many researchers are limited by the overhead (and
sometimes pure impossibility) of reproducing results on
similar platforms. Large platforms like mobile manipulators
are expensive and difficult to obtain for researchers at smaller
institutions or companies. It is rare for researchers to have
access to common platforms, let alone shared data.

A remote robotic laboratory would allow researchers to
run experiments and compare against results produced on a
common platform. rosjs was developed as part of our work
towards developing the experimental infrastructure for the
creation of remote robotic laboratories.

We envision experimental facilities in which users will
schedule experiments using tools like Google calendar. Of-
ten, researchers will be able to code the entire robot inter-
action within a browser, making use only of the available
robot capabilities exposed through rosjs. For more elaborate
needs, the robot can be given a pointer to an subversion
(svn) or git repository containing the desired experimental
code, which will then be run locally. To encourage code
sharing, preference for time on the robot will be given
to code stored in public repositories. Data resulting from
experimental trials will be uploaded to a public repository
and linked to code used in the corresponding trial. Since
this facility will be available on the web it will enable
communities that require user studies, such as human-robot
interaction and learning from demonstration, to acquire a
significant amount of data — finally moving them beyond
“proof-of-concept” demonstrations.

Figure 2 depicts our vision of how a remote robotics
lab will work specifically in the case of learning from
demonstration. Users schedule time on the robot and can
interact with the it using the remote interface. This interface
can be used to demonstrate tasks or to visualize the robot as it
performs tasks provided by custom built controllers. During
each session data is logged and stored in a publicly avail-
able repository. Custom controllers and learning algorithms,
provided in public code repositories, can use the data and
provide policies for desired tasks on the robot.

There are many technical challenges to address when
creating such a remote lab. The functionality provided by
rosjs is instrumental to overcoming them. A web interface
is required so that users can work with the robot remotely.
The user must have some way of controlling the robot, either
with code or through teleoperation. Users must also be able
to visualize the result of the control. Security measures are
required for the safety of the robot. In the next section, we
describe two remote labs, pictured in Figure 3, and describe
how they handle these requirements.

Fig. 3: Two different remote labs currently under develop-
ment. The first depicts an iRobot Create learning to navigate
a maze. The second contains a PR2 that can manipulate
objects on a table.
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Fig. 2: Conceptual overview of a remote laboratory. Users can interact with robot platforms, log and retrieve data in a public
repository, and access both standard and custom controllers and learning algorithms.

V. EXAMPLE ROBOTIC EXPERIMENTAL ENVIRONMENTS
A. iCreate Maze

The iCreate Maze allows users to demonstrate the correct
path through a maze to an iRobot Create. The website allows
a user to access the robot if it is not currently in use. Users
are randomly presented with one of two interfaces. The first
shows a compressed video feed from the robots camera. The
second shows a visualization of the robot’s perceptual space.

1) Augmented Reality Aided Visualization: In order to cre-
ate a lightweight perceptual space we employed Augmented
Reality (AR) tags. We use AR tags in robotics domains, like
the maze navigation, to augment or replace vision algorithms.
AR tags can be used to mark and identify locations or
objects of interest. The tags are recognized using our publicly
available ar_recog ROS node’that wraps the ARToolkit [18],
a software library for building AR applications. ar_recog
returns the position and id of the tags within the current
visual frame. Thus, tags can be easily visualized over the
web since only the location information must be sent and
the browser can render the appropriate visualization in terms
of scale and location.

B. PR2 Manipulation

Interacting with a mobile manipulator such as the PR2
is a more complex task than an iCreate. Thus the remote
lab interface for the PR2 is substantially more complex and
includes 3d visualization of the robot using WebGl as well
as authentication procedures for security.

1) 3D Web Visualization: One of the most useful tools
in robot development is a 3D visualization environment.
The remote lab interface contains a widget that provides
this functionality. Whether robot models, poses, maps, or
custom visualization markers, the visualization widget can

Zhttp://code.google.com/p/brown-ros-pkg/wiki/ar_recog
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Fig. 4: Visualization of a remote lab interface that can
be used to teleoperate a PR2 for tasks such as object
manipulation.

display views of various types of robot data. The underlying
technology for visualizing 3D data on the web is WebGL,
a 3D graphics API implemented in a web browser without
the use of plug-ins. Similar to OpenGL, WebGL provides a
programmatic interface for 3D graphics using the OpenGL
ES 2.0 standard. Our 3D visualizer provides an interface to
WebGL based on world objects and other high level classes.
It also provides a scene graph, which is an object-oriented
representation of the 3D world. Such a representation is
especially suitable for robotic development, since data is rep-



resented in various interdependent frames. It also simplifies
the extension to new data types since scene nodes can be
implemented for any data type and inserted into the graph,
as long as they adhere to a common interface.

2) Authentication using Google Calendar: Earlier in the
paper we described rosjs’s generic authentication mechanism.
In this section we describe a concrete example of how the
authentication mechanism was implemented for the PR2
Manipulation remote lab. In this lab authorization was tied
to Google’s calendar and OpenlD services. This involved
writing two web services: the key authenticator and key
provider. The authenticator is little more than a wrapper that
speaks the jsonp format expected by rosjs (see Section III-
A.2). The key provider handles communicating with Google.

A typical successful authentication proceeds as follows.
The user arrives at a login page for the robot. This page
uses Javascript to speak with the key provider and receives a
novel alphabetical challenge string. The page then constructs
an OpenlD authentication request URL that it attaches to a
”login” link on the page. When the user clicks this link, they
are taken to Google’s servers to perform the actual login.
The URL encodes both the challenge and the location of the
robot control page. If the user successfully logs into a Google
account, Google will send the user to the robot control page
and pass on (again, through URL parameters) the challenge,
the relevant account information, and a confirmation token.
The robot control page passes this information onto the
provider which files it into persistent storage. In exchange
it receives a key associated with the storage location. In the
current system, it is this key that acts as the authentication ex-
pected by rosjs. The robot control page can now start a rosjs
connection and use the key to authenticate itself, matched
against the corresponding token. The provider thereby knows
what Google account is making an authentication request,
checks for a current appointment with Google’s calendaring
system, and determines the amount of time remaining in the
appointment. Finally, the authenticator passes this informa-
tion back to rosjs.

This scheme, as currently implemented, does not provide
any protection against denial of service (DOS) attacks nor
man in the middle attacks (the one-time key is given to rosjs
over an open socket). It does protect against replay attacks
and identity theft. This seems to be a common compromise
amongst commercial web services. For example, both Face-
book and Google use SSL only during their authentication
stage and thereafter are more open to session hijacking.
However, it should be noted that the authentication scheme
detailed here represents the beginning rather than the end
of what is possible. Because rosjs supports an outside (op-
tionally SSL enabled) communication channel, developers
are free to implement more complicated challenge-response
mechanisms if they so choose.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described rosjs, a Javascript library for
ROS, that allows developers to expose robot functionality as

web services. rosjs allows developers to create robot applica-
tions that can be used in the web browser and extends ROS
to provide security and data logging mechanisms. We also
described infrastructure we have developed to allow remote
experimental robot laboratories and showed progress on two
remote laboatories. We plan to continue extend the remote
laboratories to add functionality and additional tasks and
provide these labs to the research community. We also plan to
expand our suite of remote lab capabilities and infrastructure,
to include supporting hobbyists in deploying remote labs
of their own. We are currently developing a soccer-playing
setup using NXT-based Lego robots in support of this goal.
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