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Abstract 

Small unmanned aircraft (or aerial) systems (sUAS) are poised to revolutionize geospatial 

data collection for meteorology and atmospheric science, particularly within the lowest 

portion of the atmosphere, referred to as the atmospheric boundary layer (ABL), where 

conventional data collection techniques such as satellites, balloons and ground-based 

weather towers do not provide adequate coverage for monitoring certain types of 

weather events. The prospects of these autonomous mobile sensing platforms for 

geospatial data collection in the atmospheric realm are immense, but there has been 

limited discourse on the broader GIScience-related research challenges and opportunities 

surrounding data capture and analysis for this field beyond traditional imagery 

applications. Here, we address the integration of sUAS into meteorology and atmospheric 

science applications, including severe weather monitoring, from the perspective of the 

myriad GIScience research challenges and opportunities that exist for collecting and 

processing alternative types of non-image geospatial data from sUAS. Specifically, we 

highlight opportunities surrounding data capture and processing, data representations, 

and societal implications stemming from these applications. 
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1 Introduction 

The atmospheric boundary layer (ABL), which is the portion of the atmosphere in direct 

contact with the surface of the Earth, plays a critical role in the formation of weather events. 
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Approximately 1 km thick, the ABL is difficult to monitor using traditional tools such as 

weather balloons, ground-based radar, and networks of ground weather stations (i.e., 

mesonets), because these methods are often not able to sample the full extent of the ABL. 

Similarly, satellite-based imagery and radar do not offer adequate spatial and/or temporal 

resolutions for monitoring the small-scale changes in the ABL, which can occur on 

timescales as short as 20 minutes (Fujita, 1962). Small, unmanned aircraft systems (sUAS; 

weighing <55lbs or 22.7kg) have the potential to be used as a diagnostic tool for atmospheric 

science and operational meteorology within the ABL, but there are many GIScience-related 

technical, conceptual, and societal challenges that need to be addressed before sUAS can be 

used to their full capacity in this realm. While sUAS have been used for many years in 

terrestrial remote sensing and have been successfully integrated into imagery data collection, 

processing, and analysis workflows (see Colomina & Molina, 2014 for a review), there has 

been limited discourse on the broader research challenges and opportunities for integrating 

alternative, non-imagery data streams such as atmospheric measurements of temperature, 

humidity, and wind speeds into GIS analyses.  

The aim of this article is to present a conceptual overview of some of the GIScience-related 

challenges and opportunities of integrating sUAS into meteorology and atmospheric science. 

While geospatial applications of sUAS have become practically synonymous with aerial 

photography surveys during recent years, there remain many theoretical, methodological, and 

ethical challenges for collecting and processing non-imagery datasets derived from sUAS. We 

discuss several specific areas of GIScience, including data capture and processing, data 

representation, and societal implications, where we see potential for advancements to be 

made surrounding the use of sUAS. We focus our discussion specifically on meteorology and 

atmospheric science, which have been under-examined in certain aspects of GIScience 

(Mark, Smith, Egenhofer & Hirtle, 2005). It should be noted that the intent of this 

discussion is to stimulate increased sUAS-related discourse and investigation within the 

GIScience community, not necessarily to provide solutions to these challenges and 

opportunities. 

2 Data capture, storage, and processing 

Data acquisition and processing workflows for imagery collected from sUAS are discussed 
widely in the literature (e.g., structure from motion [SfM] algorithms, etc.), but other types of 
data acquisition from sUAS have not received comparable attention in the GIScience 
literature. In the atmospheric sciences, sUAS are being outfitted with sensors that measure 
temperature, pressure, humidity, and wind speed (Frew, Elston, Argrow, Houston & 
Rasmussen, 2012; Hemingway, Frazier, Elbing, & Jacob, 2017), as well as dropsondes (Avery 
& Jacob, 2015), which are expendable weather reconnaissance devices that measure 
atmospheric conditions as they fall to earth (Figure 1). Scientists are specifically interested in 
using sUAS to capture vertical profiles of atmospheric conditions (Cassano, 2014), but 
challenges arise during data collection because researchers are only in the initial stages of 
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establishing the optimal spatial sampling scales to adequately capture the phenomena under 
investigation (Hemingway et al., 2017). Determining appropriate data collection and 
sampling scales for spatial statistical analyses has historically been on GIScience research 
agendas (McMaster & Usery, 2005; Goodchild, 2010), and considerable advancements have 
been made in terms of terrestrial sampling scales. However, with the limited attention given 
to meteorological phenomena in certain GIScience foci (Mark et al., 2005), there are 
opportunities for research, particularly related to sampling scales, that until now were not 
possible using available technologies. For example, a recent study utilized a common 
geostatistical technique, variogram modelling, to identify the optimal vertical scales from 
which to sample certain atmospheric phenomena (i.e., temperature and relative humidity) via 
sUAS flying profiles (Hemingway et al., 2017). Broadly, the authors found that vertical 
sampling scales of approximately 1–3 m were sufficient for capturing variation in 
temperature and relative humidity across their study area. However, they only investigated 
spatial autocorrelation in a single (i.e., vertical) direction for a single geographic area, and 
further investigations are needed to extend these findings to two, and eventually three (i.e., x, 
y, z), dimensions across a wide range of environmental conditions. 

 

Figure 1: Atmospheric sensing from unmanned aerial systems (UAS). Photo credits: Jamey Jacob and 

CLOUD-MAP 

Previously, the high cost of covering large areas through ground-based networks hindered 
widespread implementation of sensor networks (Wang, Zhang, & Wang, 2006), but with 
advances being made in the development of low-cost, miniaturized sensing devices (Nittel, 
2009), sUAS are providing a more dynamic and flexible option for implementing large sensor 
networks. Unlike ground-based weather stations in which towers, typically about 10 m high, 
are erected in a fixed geographic location and instrumented with various atmospheric sensors 
(McPherson et al., 2007), sUAS can carry the same suite of sensors with greater flexibility for 
covering space (Figure 2). sUAS also have greater flexibility in the spatial and temporal 
resolutions of the data captured compared to satellites, in which spatial resolution is often 
fixed before sensor deployment and cannot be changed after the satellite is launched.  
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Figure 2: sUAS flying in coordinated networks can provide flexible positioning and data acquisition 

compared to satellites and ground stations 

Another benefit of situating sensors onboard sUAS is the potential for adaptive sampling 

schemes via coordinated, self-organizing fleets of sUAS. Key to the implementation of these 

adaptive sUAS sensor networks is the development of algorithms for coordinating, 

controlling, and systematizing a distributed network of airborne sensors. Although 

development is ongoing, we anticipate that multiple sUAS flying in a mobile network will 

soon be able to communicate with each other and ground stations in order to autonomously 

coordinate collection of optimally distributed spatial datasets. This type of (semi-

)autonomous decision-making regarding sampling locations will permit adaptive sampling 

schemes, both atmospheric and terrestrial, not previously possible through fixed, ground-

based networks. For atmospheric sampling in particular, sUAS will be able to communicate 

the information collected from onboard sensors (Figure 1a), such as temperature, humidity, 

and wind speed, to associated sUAS flying nearby; based on the incoming information, the 

associated sUAS will be able to alter their flight paths autonomously to identify the scale of 

the phenomenon of interest. This type of coordinated intelligence will ultimately be able to 

detect atmospheric phenomena, such as a storm supercell or pollution plume, much more 

rapidly than current systems allow.  
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However, several GIScience-related challenges need to be overcome before we see fleets of 

data-collecting sUAS in the sky (Namuduri, Wan, & Gomathisankaran, 2013). Current 

technology allows sUAS to fly in coordinated networks (e.g., sense and avoid, situational 

awareness), but the sensor, control, and antenna technologies that will enable multiple sUAS 

to make coordinated measurements are still being refined (Mullen, Bailey, & Hoagg, 2016). 

Furthermore, collecting these data requires algorithms that can handle large variances in 

communication rates, link reliability, mesh network connectivity, and bandwidth (Crick & 

Pfeffer, 2003), difficulties that are common when flying UAS, typically in rural areas. 

GIScience has long dealt with big data issues, particularly related to CyberGIS (Wang, 2010), 

but difficulties associated with storage, sequencing, integration, and communication are 

magnified when data are produced by mobile platforms with infrequent, unreliable 

bandwidth or power-limited message transfer. Data can be stored onboard all but the 

smallest, most limited platforms, as technical issues of weight, volume, and power 

consumption have largely been solved. However, data stored onboard are inaccessible to 

real-time applications, thus inhibiting cutting-edge, space-time GIScience applications. In 

other situations where data are transmitted over a radio connection, platforms may have to 

prioritize reporting, applying information-gain filters or novelty detection to prioritize data 

for communication, which again poses challenges for real-time geospatial analyses. Assuming 

these technological limitations can be overcome, opportunities exist in GIScience to 

investigate adaptive sampling schemes across space and time, and specifically within 

CyberGIS, to contribute to advances in distributed, mobile computing onboard sUAS. 

3 Geographic representation  

Regardless of whether researchers are flying a single sUAS on an isolated mission or 

coordinating a distributed, mobile network consisting of a fleet of sUAS collecting 

atmospheric data in tandem with each other across larger geographic regions, the data being 

collected for atmospheric and meteorological purposes typically consist of geographic (x, y, 

z) locations attributed with values for the particular phenomenon being sampled 

(temperature, humidity, wind speed, etc.). The output from these data-capture missions is a 

cloud of vector points, which is not unlike a point cloud produced by lidar returns, or the 

popular structure from motion (SfM) approach for creating 3D models of digital terrain and 

surfaces via aerial photographs (Jensen & Mathews, 2016). Unlike discrete return lidar 

products or SfM point clouds that are often used to model objects on the surface of the 

earth (e.g., trees, buildings), the vector datasets produced from atmospheric investigations 

often represent continuous phenomena that vary in the x, y, and z dimensions. While some 

types of lidar returns, such as those representing elevation, are often converted into 2D 

rasters representing a continuous surface of elevation changes, the volumetric nature of 

atmospheric sampling limits the value of these types of rasters for representing atmospheric 

phenomena. Thus, neither 2D polygon objects nor 2D rasters are optimal for representing 

atmospheric datasets captured from sUAS.  
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Voxels (i.e., volume elements) are currently the primary data model used to represent 3D 

objects in GIS, where each voxel represents a 3-dimensional cell in a tessellation, typically a 

regular tessellation, and the size of each voxel (i.e. the area it covers) is predetermined by the 

data model. Voxels can be interpolated across space from x, y, z points or generated using a 

‘flood-filling’ algorithm (Lieberwirth, 2008), but regardless of how they are created, they face 

similar challenges to those of 2D rasters, because resolution is predetermined, and pixels are 

often arbitrarily defined spatial units that do not always represent meaningful geographic 

units (Hay & Castilla, 2008). 

Voxels have seen limited use in the geographical domain, and the lack of adoption may be 

because their positional accuracy can be low if resolution is low, and because voxels cannot 

represent topological relationships, which form the backbone of spatial analysis (Gong & 

Xia, 1999). Recognizing the limitations of 3D modelling in GIS, more than a decade ago 

Yuan, Mark, Egenhofer and Peuquet (2005) identified the need to improve geographic 

representations in order to better model volumetric (3D) and dynamic phenomena within 

GIScience, but progress has been slow. Most software packages still do not treat 3D or 

dynamic phenomena adequately, which is problematic for representing atmospheric data 

captured by sUAS.  

Nearly two decades ago, Gong and Xia (1999) introduced an alternative data model for 3D 

representation, derived from integrating vector, raster, and object-oriented data models. 

Widespread adoption of their data model did not occur, and developing similar creative 

alternatives in which different types of spatial objects can be represented more completely 

and accurately than through voxels alone is an overdue research need in GIScience. In 

particular, prisms are a promising solution for modelling atmospheric data, since they can 

coincide with the square spacing of a 2D raster in an x, y plane but model the z direction 

(height) with more precision. Recently, data model development activity has increased within 

open source platforms such as GRASS GIS (Neteler, Bowman, Landa, & Metz, 2012), but 

sUAS may provide the needed technological stimulus to promote better modelling of 3D 

and dynamic phenomena within GIScience (see Nittel et al., 2015).   

Dynamic and continuous representations are another area where the current GIS data 

models are sub-optimal for the types of atmospheric data which sUAS are anticipated to 

generate in the near future. As stated previously, state-of-the-art research in robotics and 

antenna design is expected to enable multiple sUAS to organize themselves during flight and 

collect coordinated, continuous measurements of environmental parameters, which, for 

atmospheric monitoring, would take the form of either linear or polygonal gradients of 

temperature or humidity. These types of gradient measurements are especially useful in 

severe weather monitoring to ensure platforms remain out of the direct path of the storm 

while still collecting valuable information in and around the storm (Figure 3). Two-

dimensional, discrete vector data models (i.e., arcs or lines) are unable to model and 

represent continuous, dynamic data in GIS. Single-row raster or voxel datasets (2D or 3D) 

are similarly inappropriate, since precision depends on the resolution of the pixels/voxels. 
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Thus, new data models are needed that can appropriately abstract these representations of 

the environment.  

 

Figure 3: Hypothetical examples of continuous spatial data models obtained via coordinated 

networks of unmanned aerial systems (UAS) collecting data in tandem. 

Lastly, acoustic and infrasonic waves are data types that have not been modelled in GIS but 
are likely to see increased collection via sUAS for applications related to atmospheric physics. 
Many types of natural and anthropogenic phenomena emit infrasound (e.g., avalanches, 
earthquakes, tornadoes, meteors, explosions, supersonic aircraft; Bedard, 1998), and cutting-
edge research is investigating whether infrasound can be used to detect certain severe 
weather or seismic events (e.g., tornadoes or earthquakes) before they occur (Elbing & 
Gaeta, 2016). This work will involve detecting and mapping the presence and degradation of 
infrasound waves via the integration of a ground sensor network with infrasonic sensors 
placed onboard sUAS platforms. However, the capabilities of mapping these data are limited, 
for several reasons. First, sound waves exhibit different characteristics from light waves (e.g., 
echoes), which may limit the usefulness of vector or raster data models for representing the 
distance and direction to a particular source of infrasound. Second, infrasound can travel 
long distances without dissipating, which makes it difficult to assign a spatial location to the 
source based solely on the measurement from a single sensor, and multiple arrays are often 
needed to triangulate the signal. However, if we can capture these signals and represent 
acoustic and infrasonic phenomena in GIS, it may be possible to integrate this information 
into weather models and warning systems. 
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4 Societal implications 

GIScience has been addressing questions of the privacy and confidentiality of geospatial data 

and surveillance using geotechnologies for decades (Elmes et al., 2005). Given the many 

ethical debates surrounding military drones, the use of sUAS for geospatial data collection 

has motivated renewed discussions of privacy issues with regard to the collection, use, and 

analysis of geospatial data. In a qualitative study about the privacy implications of UAS, 

Wang, Xia, Yao, and Huang (2016) found that territoriality (public vs. private spaces) played 

a key role in shaping participants’ privacy concerns in relation to UAS. Unmanned systems 

flying within ‘private spaces’ (defined loosely by ownership of the space, sensitivity of the 

space, and activities performed within the space) were considered by respondents to be a 

greater invasion of privacy than those flying in ‘pubic spaces’. However, if sUAS are to be 

integrated successfully into atmospheric research and, in particular, into severe weather 

monitoring, flights cannot be confined to public spaces if they are to capture valuable data. 

Thus, public awareness and acceptance of sUAS, including the public safety benefits they 

may provide and their usefulness in protecting assets, are critical for progressing towards 

routine flight operations (DeBusk, 2010).  

A recent study by PytlikZillig, Duncan, Elbaum, and Detweiler (in review) gathered public 

perceptions from more than 800 respondents regarding the use of sUAS in weather-related 

monitoring. The authors found that the purpose of a mission impacts people’s willingness to 

‘allow’ or ‘forgive’ certain uses, with weather monitoring scoring high in terms of 

acceptability. These findings echo those of Miethe, Lieberman, Sakiyama, and Troshynski 

(2014), who report that 87% of the public support ‘climatic/geological mapping’ from sUAS. 

Further, PytlikZillig et al. (in review) found that certain trust-brokering processes, in which 

trust between the agencies performing the monitoring and the people that may be affected is 

strengthened, may, in certain situations that benefit society, have the potential to alleviate 

some of the negative perceptions surrounding the use of sUAS. 

Lastly, societal challenges of incorporating sUAS into atmospheric science applications 

extend to the citizen science realm, where citizens operating their own sUAS system can 

contribute data in support of science missions. Citizen science fits within the subfield of 

Volunteered Geographic Information, or VGI (Goodchild, 2007), and an emerging research 

theme within these sub-fields is data quality and uncertainty (Haklay, 2013). While a 

substantial portion of the sUAS market is driven by civilian use of sUAS for photography, 

video, surveying, and mapping, there are relatively few citizen science and participatory 

mapping projects engaging with sUAS (Mathews & Frazier, 2017). A probable reason is that 

these sorts of citizen science activities may pose problems of data quality and uncertainty. 

Specifically, uncertainties can be introduced at three stages by citizen scientists using sUAS 

for atmospheric science missions: (1) during the interpretation of atmospheric phenomena 

(e.g., identifying whether or not an atmospheric or severe weather event is occurring); (2) 

during the measurement and representation of atmospheric phenomena (e.g., ensuring on-

board sensors are properly calibrated and collecting valid data); (3) during the post-
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processing and analysis of the data representing these phenomena (e.g., preventing mistakes 

during data download, transfer, upload, etc.). While some of the uncertainties experienced by 

sUAS operators are similar to those encountered when using other geospatial technologies 

(e.g. GPS), others, such as identifying atmospheric phenomena and calibrating sensors, may 

require specialized training to expand sUAS technology into VGI and citizen science 

projects. 

5 Conclusions 

Small, unmanned aircraft systems (sUAS) are a low-cost, flexible option for geospatial data 
collection that are rapidly being integrated into meteorology and atmospheric science, 
particularly for sensing the lowest portion of the atmosphere, the atmospheric boundary 
layer (ABL), where conventional techniques such as satellites, balloons, and ground-based 
weather towers do not provide adequate coverage. Their growing use in these domains 
presents both challenges and opportunities for GIScience, because the data being collected 
are typically not imagery, which is where most application-related sUAS advancements have 
been made in the GIS realm. In this paper, we have addressed some of the challenges 
associated with collecting and processing these alternative geospatial datasets acquired from 
sUAS and have also outlined some of the emerging opportunities for theoretical and 
methodological advances related to this technology, specifically focusing on non-image data 
capture for meteorology and atmospheric science. The areas of GIScience where we found a 
particular need for additional research include: (1) spatial sampling scales for capturing 
atmospheric phenomena via sUAS in both the vertical and horizontal dimensions; (2) 
CyberGIS challenges of providing real-time solutions for data storage, sequencing, system 
integration, and communication amongst a sensor network of sUAS; (3) societal 
implications, including privacy issues, trust, and citizen science applications. The aim of this 
study is to stimulate further sUAS-related discussion and investigations as this rapidly 
emerging technology is being adopted into new fields. 
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